Our study was limited to examining the
resting state and did not incorporate acti-
vation procedures. Thus, our conclusions
concern topography of the human brain
while it is “idling” in a semistructured en-
vironment, which may itself influence re-
gional brain activity. Further regional and
sex differences may become evident when
activity is measured during the performance
of behavioral tasks or pharmacologic chal-
lenges. Nonetheless, the results suggest neu-
ral substrates for domains of human behav-
ior related to both cognitive and emotional
processing. They support a neurobiologic
explanation of some sex differences in these
behavioral dimensions and thus may help to
explain sex-related differences in behavior.
Individual differences within a sex and the
overlap between the sexes may reflect
“noise” in the measurement but perhaps, as
can be tested empirically, can also be relat-
ed to individual differences in sex-typical
behavior.
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Cloning of an Intrinsic Human TFIID Subunit
That Interacts with Multiple
Transcriptional Activators

Cheng-Ming Chiang and Robert G. Roeder*

TFIID is a multisubunit protein complex comprised of the TATA-binding protein (TBP) and
multiple TBP-associated factors (TAFs). The TAFs in TFIID are essential for activator-
dependent transcription. The cloning of a complementary DNA encoding a human TFIID
TAF, TAF,55, that has no known homolog in Drosophila TFIID is now described. TAF, 55
is shown to interact with the largest subunit ( TAF,230) of human TFIID through its central
region and with multiple activators—including Sp1, YY1, USF, CTF, adenoviral E1A, and
human immunodeficiency virus-type 1 Tat proteins—through a distinct amino-terminal
domain. The TAF,55-interacting region of Sp1 was localized to its DNA-binding domain,
which is distinct from the glutamine-rich activation domains previously shown to interact
with Drosophila TAF,110. Thus, this human TFIID TAF may be a co-activator that mediates
a response to multiple activators through a distinct mechanism.

The multisubunit protein complex TFIID
(1-5) is required for transcription by most,
if not all, promoters targeted by RNA poly-
merase II (class II promoters). At TATA-
containing class I promoters, TFIID first
binds to the TATA box and then recruits
other basal factors and RNA polymerase 11
to the promoter (6, 7). Whereas the TBP
subunit is sufficient for basal transcription,
activator-dependent transcription requires
the TAFs of TFIID as well as upstream
stimulatory activity (USA)-derived cofac-
tors (5, 6, 8). The possibility that individ-
ual TAFs may have activator-specific func-
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tions is suggested by their multiplicity (up
to 8 in Drosophila and 13 in human TFIID)
(1-5) and by the demonstration of Drosoph-
ila TAF-specific interactions with the mam-
malian activators Spl and Gal4-VP16 (9,
10).

The human TFIID subunit TAF;;55 was
isolated from a cell line that expresses
epitope-tagged TBP for the immunopurifi-
cation of TFIID (5). Two peptide sequences
derived from thermolysin digestion of
TAF;;55 were used to design degenerate
primers for polymerase chain reaction
(PCR) amplification (11). The PCR prod-
uct was used as a probe to screen a human
placental complementary DNA (cDNA) li-
brary. A clone that contained a ¢cDNA
insert of a size corresponding to that of the
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TAF,;,55 transcript (~2.3 kb) as detected by ~ amino acid sequence of this insert (Fig. 1)  contains a 5’ untranslated region of ~700
Northern (RNA) blotting (12) was isolated ~ shows no extensive homology to any known  nucleotides and encodes a protein with a
and completely sequenced. The predicted  genes in the GenBank database. The insert  calculated molecular mass of 40 kD. The
predicted protein contains 40% charged
residues, which may account for the abnor-

Fig. 1. Nucleotide and 1 GAATTCGCGGCCGCCGAGCTGCGCCTCTCGGCAAGATTTCGCGCTGCCCATCCCGGGCCCTTTCATCAG 1 n

redicted amino acid se- 70 TAATCAGTAGTGGATCACTCTGCCAAGCGGCAGGAAGAATTAAGGAAACGACAAGGAGACGCTCGGCTC mal electrophoretlc mOblllty of TAF“55)
p 139 TCTCCCGCTTGGCTCCTTTCGGCCTCCTCTTCCCTTCGCTCCGGCCCGGTGAAACTGAACTTATAATCG ) X
quences of the human 208 TCACTGGATTGTAAGTACCCGAGGCGAAGAGAGCTCGCTGAGCCCTGATTTTTTGAGTGTCTTTGTTCC and has two cysteine residues at the NHZ-

. 277 GGGAGAGTTTGTGAGTTGAAAGTATCTCTGCTGGGCTTTCTGGGCCGARAACCGTTCCGGGGGAGCCGC . . . .
TFID  subunit  TAF,55. 346 CATTTGCTTTCCTGTTCCCTAGCTAGCTAGCTAGCTCTCTCCGCGTTGTCCGGCAGCGGCACCTAGAGE terminus Wllth dl'le p?ltenl?call to forcfin m{_ﬁ-
Abbreviations  for 415 TTGGGACTTGGCATTGCATCTGATTTAATGAACTTAAGTCTGTGAATAAGCCTTTGTGTTAACGACTGG ; ; : .

bl?e at.o s o the 484 TATTCGGTCACAGCATATTTAGAGAAAAGACTTGGAGCTTAAATAARAACTAAGGCAAAATAGACGCTT or intermolecular disu l.e bonds €
amino acid residues are 553 AGCTGCTGATCTACAGAGAACTTCTTGTAATTAAAAGATTTCAATTCATAGCAAACTGGTGTTTTAAAC c¢DNA corresponds to a single-copy gene
A, Ala; C, Cys: D, Asp: E 622 TATTGCAGTAGCTGGAACTTTTTAGTGIAACCAGCATTTATTGGAGAAGTGAATCACAAGGAAATAAAG . . .

Giu' ,_1 I;’hey ,G ’ GE/F'J,H’ 691 ATGAGTAMAGCMAGATGATGCTCCTCACGAACTGGAGAGCCAGTTTATCTTACGTC:GCSTCSAG:A thaé 18 exlplc'lessedhln alll:l’numanltlssues ei(am-
P A 1M B K B K D D A R e A oL AN ined, including heart, brain, placenta, lung
is: . . . 760 TATGCCTCTACTGTGAGAAGGGCAGTACAGTCTGGTCATGTCAACCTCAAGGACAGACTGACAATTGAG R » DTetth ) )
His; 1 le: K Lys L e e v a s & n v % 1 &b & iz liver, skeletal muscle, kidney, and pancreas
M, Met; N, Asn; P, Pro; 829 TTACATCCTGATGGGCGTCATGGAATCGTCAGAGTGGACCGTGTTCCATTGGCCTCAAAATTAGTAGAC
Q Gln-R Arg.s Ser.T 47 L _H P D G R H G I Vv R V D R V P L A 8 K L V D (12).

! o P ) CTGCCCTGTGTTATGGAAAGCTTGAAAACCATTGATAAAAAAACTTTTTACAAGACAGCTGATATCTGT . . . P
Thr; V, Val; W, Trp; and Y, B G A e e e e e ke ap 1 e To confirm that TAF,;55 is an intrinsic
Tyr. The sequences 367 CA:GA‘I‘;GC‘Ix‘:l‘GSATCSCAS.AG‘I‘;TGA:\’TG(;TG};TCE“CT}:TCiTCiTGaGGl;GG}:GCiAG"I;TGiTA(;CASlTGADT TFIID subunit, we first expressed in bacte-
shown are from a single 1036 CCTAAAGCAAGCAAGAAAAAGGATAAGGACAAAGAGMAAAGTPTATCTGGM:’CCACGgAA‘i“I‘A(:TCzG ria both the synthetic FLAG epitope—

. 116 P XK A 8 XK K XK D K D K E K K F I W H h
phage isolate (7-21) that 1105 CCTCTAAAGAATGTCAGGAAGAGAAGGTTCCGGAAGACAGCAAAGAAGAAATATATTGAATCTCCAGAT tagged and untagged TAF1155 proteins (13)
H 139 P L K N V R XK R R FP R XK T A K K K Y I EBE 8 P D . .
?pp?':ent_:_ﬁ:ogtsamslamf\lux- 1174 GTTGAAAAAGAAGTGAAACGATTGCTGAGTACAGATGCTGAAGCTGTTAGGACTCGGTGGGAAATAATT 'ill‘ld eStathll:lled a Hela cell-derived Clill
eng I CONA. 262 v B x B v X R L L & * D A K AV R I R N R I 1 ine (55-9) that constitutively expresses the
; 1243 GCCGAAGATGAAACAAAGGAGGCAGAAAATCAAGGCCTGGATATCTCTTCTCCAGGAATGTCTGGTCAC .
IS(t)mehOf the_l_phage IISO- 185 A E D E T K E A E N Q G L D I 8 8 PCC;CA;CA;CAZCAG!T FLAG-tagged TAFHSS (f:55) with the use
- CATGACTCATTAGAACATGATGAGCTTCGGGAGATATTCAATGA > .
ates Nave a T At NUCle0- 112 AeGC T O e p n o s s e of retrovirus-mediated gene transfer (13).
tide 1224 (underlined), iN- 1357 GAGGATGAAGATGAGACCCAGCATCAAGATGAAGAAGATATAAACATCATTGACACGGAGGAAGATCTG FLAG d TFIID (£TFIID fied
stead of G, which results 231 E D E D E T Q E @ D E E D I N I I DTE E D L -tagge ( )WaSpurlle
) S ) . 1450 GAGAGACAGCTACAGGACAAGCTAAATGAATCAGATGAACAGCACCAGGAAAATGAAGGAACCAATCAG f he phosphocellul (P11) 0.85 M
masmgleammoaad 254 B R Q L Q D K L N E 8 D E Q H Q BE N E G T N Q romte‘pospoceuose‘ .
change (from Arg to Ser) 1519 CTGGTTATGGGAATTCAGAATCAGATTGACAACATGAAAGGCAAGCTCCAAGAGACCC};GGACAGGGiA KCl fraction of 55-9 cells with M2 agarose—
277 L Vv M 6 I @ N @ I D N X K G K L Q E T D R K . I X
and indi _ 1588 AAACGACAAGAGGATCTCATCATGAAAGTGGAAAATCTGGCTCTCAAGAACAGATTTCAGGCTGTACTG immobilized FLAG antibodies and peptide
cates e pres 0o Q B D L I ¥ K V E N L A L K N R F_O A V L
" 3 K R :
ence of allelic polymor- (¢, GaTeAGCTCARACAAAAGGAAGACCGAGAARAGGAGCAACTCAGCTCTTTGCAAGAGGAGCTAGAATCA elution methods (5). Both the exogenous
phism. The TAF,55 clone ivzzzs c'rccTAGAGAAGT:M:AG:AC;GA;AT;TA:TT';cAch;Tc:GAgTG;Tcxcc;ﬂ;cA:m;Tc;T epltope-tagged and the endogenous un-
usedinthis study hadthe 345 1 & = x * tagged forms of TAF;55 were detected in
N Th 1795 GGCTTTATTGTACTGGGTATTAAGACCTTGCTCTTCCTAGTCCTTTTAATGCTGTGTGTTCTGTTAAGT . 11 - .
Sequg’;ge S own_. d e 1864 TCTTTCATTTGTTTGTAATTTTGTTTTTCAGCAAATTTATATTGTTTTGCTAGGTGTTCATCCTATAAG 55-9 cells by 1mmunoblottmg with poly-
enco amino acias are 33 AAGCAGGATCGTATAGGCAGAAAAATGATTGTAGGAAAGTTGCAGGATTAGCGGAATGTATGGTTCAAC . . :
deduced fr leotid ho0s CMTANTTATAGCTTCATTGOAGGACTTTACTGTITCTCCATTITCTAGAAGCTGCTGTTGCTGCTTTGT clonal antibodies generated against the
uc om nucieotide 2071 GATGACGTGAGATCAATAAGAAGAACCTAGTCTAGAGACAATGATGCTAGTTTGCATATGTTTTCCTAT COOH-terminal 146 amino acids of
691 to nucleotide 1737, 2140 GCAATAGTTGTTTTCCCAGTTATTCAAAGCAGCTTTCTATATGTAGAGATGCAAATTATTAAGTTGTTT 5
which is followed by a 2209 CCAATACAATAAATAAAAGCATCTGTTTTTCACTTTAAAAAAAAAAAAAAAAGCGGCCGCGAATTC274 TAFHS5 (Flg. ZA). Most TAFHSS was

stop codon (). Three peptide sequences obtained from microsequencing of TAF,55 are underlined. An ~ Presentin ‘tlr}e 0.85M KCl .fractlon in which
in-frame stop codon immediately upstream of the TAF,55 open reading frame and a potential polyadenyl- TFIID activity is found (Fig. 2A, lanes 1 to
ation signal in the 3" untranslated region are also underiined. The sequence has been depositedin GenBank ~ 6). The upper band (f:55) comigrates with
with accession number U18062. the tagged TAF;;55 in £:TFIID purified from

Fig. 2. TAF,55 is an intrinsic subunit of TFIID. (A) Most

TAF,55 is present in the P11 0.85 M KCI fraction. A

Immunobilotting (enhanced chemiluminescence; Am- 55-9 P11 tractions
ersham) was performed with polyclonal antibodies w=ound
generated against the FLAG-tagged COOH-terminal S
146 amino acids of TAF,55 (see N204 in Fig. 3A). The
antibodies (3095) recognize both TAF;55 and any
FLAG-tagged proteins, such as FLAG-tagged TBP
(f:TBP). Purification of bacterially expressed FLAG-
tagged TAF,55 (f:55) was performed as described
(28) without the use of rifampicin. Lanes 1to 6 are g
nuclear extracts (NE) and P11 fractions from 55-9 g
cells. f:TFIID is affinity-purified TFIID (5) from 55-9 cells  peso-
(lane 7) or 3-10 cells (lane 11). Lane 8 is the purified ":,2:
f:55 from bacteria (bact.). Lanes 9 and 10 are HeLa  P®~
nuclear extracts (NE) and P11 0.85 M KCI (P. 85). Lane 1;33; (e
12 is the bacterial protein lysate after isopropyl-g-D- 5" e "
thiogalactopyranoside induction. The positions of mo-

lecular size standards (in kilodaltons) are shown on the

right. (B) Comparison of TFIID TAFs purified from

TBP- or TAF,55-expressing cell lines. The cell lines 3-10 and 55-9 are derived  from the TAF,20 cDNA (37). (C) f:TFIID purified from 3-10 or 55-9 cells supports
from Hela cells and constitutively express f:TBP and f:55, respectively. Purifi-  both basal and activator-dependent transcription in a highly purified reconsti-
cation of f:TFIID from both cell ines was as described (5). The first panel shows  tuted system (5) containing previously described amounts of Gal4-VP16, USA,
a silver-stained (Rapid-Ag-Stain; ICN) gel, whereas the other panels areimmu-  and general factors. The amounts of added f:TFIID were 1 ul (lanes 2 to 4) for
noblots with various TAF antibodies. Four microliters of the f:TFIID preparations ~ 3-10 cell reactions, and 1 .l (lanes 5 and 8), 2 ul (lanes 6 and 9), and 4 .l (lanes
from 3-10 and 55-9 cells was loaded onto the indicated lanes. The TAF,55 7 and 10) for 55-9 cell reactions. Approximately equivalent amounts of TFIID
(13735) and TAF,43 (36850) polyclonal antibodies were generated, respective-  were contained in 1 wl of 3-10 cell f:TFIID and 4 wl of 55-9 cell f:TFIID [see (B)].
ly, against the six histidine-tagged N204 of TAF,55 (Fig. 3A) and the six histidine- ~ The DNA templates are G-less cassettes that contain either five Gal4 binding
tagged COOH-terminal 93 amino acids of TAF,43 (72). The TAF,20 antibodies  sites, the HIV-1 TATA box, and the major late promoter initiator element
also detect the presence of TAF, 15, an isoform of TAF, 20 that initiates internally ~ (pGsHMC,AT) or the major late core promoter (pMLAS3).

c
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55-9 cells and with bacterially expressed f:55
(Fig. 2A, lanes 7 and 8). The lower band
corresponds to the untagged TAF;55 de-
tected in HeLa cell nuclear extracts, in the
HeLa cell P11 0.85 M KClI fraction, and in
£ TFIID purified from a FLAG-tagged TBP-
expressing cell line (3-10), as well as to
bacterially expressed untagged TAF;;55 (Fig.
2A, lanes 9 to 12). The protein composition
of £ TFIID purified from both 55-9 and 3-10
cells was further examined by silver staining
and by immunoblotting with antibodies pre-
pared against recombinant human TAFs
(TAF,230, TAF;135, TAF,95, TAF,80,
TAF;;55, TAF;43, and TAF;;20) (Fig. 2B).
The presence of defined TAFs in both prep-
arations indicates that TAF;55 is an intrin-
sic TFIID subunit. The functional identity
of £:TFIID purified from 55-9 cells was con-
firmed by transcriptional assays (14) with
highly purified TFIIA, TFIIE/F/H, the cofac-
tor fraction USA (15), RNA polymerase II,
and recombinant TFIIB and Gal4-VP16.
The addition of £:TFIID purified from either
3-10 or 55-9 cells supported roughly equiv-
alent levels of both basal (Fig. 2C, lanes 2
and 7) and activated (Fig. 2C, lanes 4 and
10) transcription at comparable concentra-

Activator interaction

A

p230 interaction

tions, demonstrating the functional equiva-
lence of both TFIID preparations.

To examine the protein-protein interac-
tions within the TFIID complex, we ex-
pressed several NH,-terminal and COOH-
terminal deletion forms of TAF;55 in bac-
teria (16) with the FLAG-tagged protein
strategy to facilitate the purification and
characterization of different interaction do-
mains (Fig. 3, A and B). Protein blot anal-
ysis with 32P-labeled baculovirus-expressed
£:55 (17) as a probe revealed a direct inter-
action between TAF;55 and TAF;230
(Fig. 3D, left panel), the large subunit of
TFIID, which has been implicated in the
regulation of cell cycle progression (18, 19).
Despite high backgrounds, this TAF;55-
TAF;230 interaction was also observed in
the crude TFIID (HelLa P11, 0.85 M KCIl)
fraction and in HeLa nuclear extracts. Con-
sistent with previous results (3, 18, 20),
TBP showed a direct interaction with
TAF;;230 in similar assays (Fig. 3D, right
panel). Solution interactions between
TAF;;55 and TAF;;230 were also monitored
by immunoblotting [with TAF;230 and
hemagglutinin (HA) antibodies] after incu-
bation of an insect cell lysate containing
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recombinant HA-tagged human TAF;;230
with various immobilized f:55 deletion pro-
teins (21) (Fig. 3C). The TAF;230-inter-
acting domain was mapped to the central
region of TAF|;55 between amino acids 139
and 249 (Fig. 3, A and C).

Because TAF;55 is a highly charged pro-
tein that may potentially interact with var-
ious molecules, we explored the interac-
tions of activators with TAF;55. Interac-
tions between affinity-purified transcription
factors (22) (Fig. 4A, top panel) and
TAF;;55 were monitored first by protein
blot analysis with the *2P-labeled baculo-
virus-expressed f:55 as a probe (Fig. 4A,
bottom panel). Signals were detected in
lanes that contained USF, Spl, YY1, hu-
man immunodeficiency virus—type 1 (HIV-
1) Tat, Gal4-E1A, and Gal4-Pro (the un-
derloaded USF and Gal4-Pro signals are
more evident in longer exposures; see also
Fig. 4B), indicating a direct interaction be-
tween TAF;55 and these activators; in con-
trast, no signal was apparent, even after
longer exposure, in lanes containing equiv-
alent amounts of HPV-11 E2, the nuclear
factor kB (NF-kB) p50 subunit, LBPlIc,
Gal4-VP16, and the overloaded protein size

ETFID
ETFID

-p230 =
| —200.0

32p_{:TBP probe

32p.1:55 probe

Fig. 3. The central region of TAF,55 interacts with the largest subunit of
TFIID. (A) The schematic representation of TAF,55 was based mainly on

computer analysis, except for the summary of the interaction studies. Poten-
tial phosphorylation sites for protein kinase C (PKC), adenosine 3',5'-mono-

249

74 167

T4-167

from 3-10 cells was loaded onto each lane.
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phosphate—dependent protein kinase (CAMP-K), and casein kinase Il (CKII)
are indicated, as are an N-glycosylation site (N-glycos.), charged (+ or —),

cysteine (C), and tryptophan (W) residues, and predicted helix regions (shad-
ed boxes). Numbers in the deletion clones denote, respectively, the first and
the last residues after the NH,- and COOH-terminal deletions. C324(+ 10) contains the NH,-terminal 324 amino acids of TAF,55 followed by 10 residues derived
from the cloning linker sequence. All clones have the FLAG epitope sequence at the NH,-terminus. (B) Coomassie blue staining of f:55 deletion proteins. The
FLAG-tagged proteins were purified as described (28), without the addition of rifampicin. Two microliters of each purified protein was subjected to electro-
phoresis in a 12% SDS-polyacrylamide gel, which was then stained with Coomassie blue. Sizes (in kilodaltons) of prestained protein markers (M) (BRL) are
indicated on the left. The lane labeled Sf9 £:55 contains f:55 purified from Sf9 cells. (C) Solution interaction studies with immobilized f:55 deletion proteins and
an insect cell lysate containing baculovirus-expressed HA-tagged human TAF,230 (HA:230). Immunoblotting was performed with polyclonal antibodies to
TAF,230 (2294). Similar results were obtained with monoclonal antibodies (12CA5) to the HA epitope (72). (D) Protein blot analysis with 2P-labeled f:55 and
f:TBP probes. The baculovirus-expressed f:55 and the bacterially expressed f: TBP (28) proteins were labeled in vitro with heart muscle kinase and [y-*2PJATP.
Protein blotting was performed as described (30). Ten microliters of HeLa nuclear extracts (NE), P11 0.85 M KCl fraction (P. 85), and FLAG-purified TFIID (f: TFIID)
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markers (Fig. 4A, bottom panel). The dif-
ference in signal intensity among various
activators may have been attributable to
variations in amounts loaded, renaturation
efficiencies, or intrinsic binding affinities for
TAF,;55. The use of TFIIB as a probe for
protein blot analysis with the same activa-
tors showed strong signals detected in lanes
containing Spl, YY1, and Gal4-VP16 (12),
indicating a direct interaction between

TFIIB and these activators (23). The obser-

suggests that different activation domains
may have preferential targets in the general
transcriptional machinery in order to acti-
vate transcription. Interaction between
TAF;55 and Gal4-Pro also implies that
TAF;;55 may associate directly with natural
CTF proteins. To confirm these results for
natural cellular activators, we incubated nu-
clear extracts with several immobilized f:55
deletion proteins and monitored bound pro-
teins by immunoblotting with specific anti-

vation that Gal4-E1A and Gal4-VP16 share
the same DNA-binding domain but inter-
act, respectively, with TAF;55 and TFIIB

bodies. This experiment confirmed interac-
tions between TAF;;55 and USF, Spl, YY1,
and CTF (Fig. 4B, lanes ORF and Refer-
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Fig. 4. TAF 55-activator interactions. (A) TAF,55 interacts with multiple transcriptional activators. (Top
panel) A Coomassie blue-stained gel showing the amounts of different activators loaded. (Bottom panel)
Protein blot analysis with 32P-labeled baculovirus-expressed f:55. Asterisks denote positions of contam-
inant proteins copurified with Gal4 fusion proteins. M, molecular size markers. (B) The NH,-terminal
domain of TAF, 55 interacts with various activators. Hel.a nuclear extracts were incubated, separately,
with five different immobilized f:55 deletion proteins. The bound proteins subsequently eluted from the
columns were detected by immunoblotting with specific activator antibodies. The Sp1 antibodies were
from Santa Cruz. The input Hela nuclear extracts (NE) and purified activators (22) (Reference) were also
loaded, individually, as positive controls for each panel. (C) The NH-terminal region of TAF,55 between
amino acids 38 and 113 is essential for interaction with various activators. Solution interaction studies
were performed with various immobilized f:55 deletion proteins and Hela nuclear extracts as described
in (B). (D) TAF,55 interacts with the DNA-binding domain of Sp1. The cytosolic fractions of Hela cells
infected by vaccinia viruses that overexpress various Sp1 proteins—including the full-length protein (FL),
the NH,-terminal 539 residues that contain both the glutamine-rich activation domains A and B (N539),
activation domain B linked to the COOH-terminal 168 residues (440CAint112), and the COOH-terminal
168 residues containing the DNA-binding domain and the activation domain D (168C) (32)—were
incubated, separately, with columns of immobilized full-length TAF, 55 that was prepared with the use of
the FLAG tag. Bound proteins were then eluted and detected by immunoblotting with Sp1 antibodies.
Molecular sizes (in kilodaltons) of the prestained protein markers are indicated on the left.
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ence). These interactions were eliminated
by NH,-terminal deletions that extend to
residue 117, but persisted (and in the case of
YY1 were slightly enhanced) with COOH-
terminal deletions that extend to position
114 (Fig. 4B, compare lanes ORF, N118§,
and C113). A more detailed mapping of the
TAF,;55 interaction domain suggested that
the NH,-terminal region of TAF;55 be-
tween amino acids 38 and 113 is essential for
activator interactions (Fig. 4C). As inferred
from protein blot analysis, no interaction of
TAF,;55 with the NF-«kB p50 subunit (Fig.
4B) or LBP1c (12) was observed in solution
interaction studies, indicating the specificity
in these assays. The importance of the NH,-
terminal region of TAF;55 in mediating
interactions with HIV-1 Tat was confirmed
by yeast two-hybrid analysis (12).

To further investigate TAF;;55-activator
interactions, we mapped the TAF;55-inter-
acting domain of Spl. The cytosolic frac-
tions of HelLa cells infected by vaccinia
viruses overexpressing either the full-length
or various mutated Spl proteins were incu-
bated, separately, with immobilized-
TAF;55 columns. Bound proteins were
then eluted and detected by immunoblot-
ting with Spl antibodies. All proteins that
contained the COOH-terminal 168 amino
acids of Spl interacted with TAF;;55 (Fig.
4D, lanes 5, 7, and 8). In contrast, an Spl
derivative that contained only the glu-
tamine-rich activation domains without the
DNA-binding domain showed no interac-
tion with TAF;55 (Fig. 4D, lane 6), even
after longer exposure. This result is consis-
tent with protein blot analysis, which failed
to show any direct interaction between
TAF;;55 and a fusion protein (Gal4-Gln)
that contained only the glutamine-rich do-
mains of Spl fused to the Gal4 DNA-bind-
ing domain (12). This TAF55 targeting
through the DNA-binding domain of Sp1 is
distinct from that of Drosophila TAF;110,
which interacts strongly with the glu-
tamine-rich activation domains of Sp1 (9).
The DNA-binding domain of Spl has pre-
viously been shown to interact with YY1
(24) and with adenoviral E1A protein (25).
Other examples of regulatory protein inter-
actions with the DNA-binding domains of
transcription factors include interactions of
VP16 with Octl, TBP with c-Rel, and E1IA
with various activators (25, 26). Attempts
to assemble TFIID in vivo by the establish-
ment of cell lines expressing various
epitope-tagged TAF;55 deletion proteins
were not successful (12), possibly because of
the inability of mutated TAF;55 to com-
pete with the wild-type endogenous
TAF,;;55 for assembly into TFIID complex-
es. Nevertheless, in corresponding cell
lines, TAF;;55 mutants with short NH,-
terminal deletions, such as N74 and N94
(Fig. 3A), still bind TAF;230, whereas



TAF;;55 mutants with a deletion to residue
166 show no interaction with TAF;230
(12). These results further strengthen the
conclusion of the TAF;55 and TAF;230
interaction studies based on in vitro solu-
tion interaction assays (Fig. 3C).

Previous studies have shown interac-
tions of Drosophila TAF;;110 and Drosophila
TAF;40 with the glutamine-rich activation
domains of human Spl and the acidic acti-
vation domain of Gal4-VP16, respectively,
which suggests that individual TAFs may
serve as targets for different types of activa-
tion domains (9, 10). We have shown here
that a single human TFIID TAF (TAF;;55)
with no apparent Drosophila homolog is ca-
pable of interacting with a variety of mam-
malian activators whose activation domains
and DNA-binding domains are thought to
differ in overall character but could share
subtle commonality of structure (27). In the
case of Spl (Fig. 4D) and USF (12), it
appears that targeting to the DNA-binding
domain of activators by a TFIID TAF may
be another way to modulate transcriptional
activities. Given the restricted number of
TAFs in TFIID, and assuming that they
help mediate activation by the hundreds of
activators so far identified, it seems reason-
able, on the basis of our results, that a single
TAF may serve as a target for multiple
transcriptional activators. The observation
that some activators can interact with mul-
tiple components (basal factors, TAFs, or
USA-derived cofactors) in the transcrip-
tional machinery is consistent either with
concerted (possibly synergistic) interactions
of multiply bound activators (or distinct
domains in a_single activator) or with se-
quential or alternative interactions of a sin-
gle activator on a given promoter (8).
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B TECHNICAL COMMENTS

Paleotopography of Glacial-Age Ice Sheets

W. R. Peltier (1) presents a model that
reconstructs the paleotopography of glacial-
age ice sheets on the basis of sea level
curves and the viscoelastic properties of the
earth’s crust and mantle. The model has
profound implications because it suggests
that the elevation of northern hemisphere
glacial-age ice sheets was much lower than
previously believed. The low topography
has implications for atmospheric general
circulation models of ice age climate. Fur-
thermore, the model suggests that the gla-
cial-age Antarctic Ice Sheet was signifi-
cantly larger than today’s.

Such models can now be tested more
rigorously because of the advent of sea level
curves that have high resolution and cover
most of deglaciation. Before the late 1980s,
most deglacial records covered only the
very last portion of deglaciation and chro-
nologies were established with *C dating.
In the late 1980s the development of ther-
mal ionization mass spectrometric (TIMS)
techniques for measuring 2>*U (2) and
230Th (3) provided the capability to obtain
high-precision *°Th ages of coral skeletons
(3). TIMS 2°Th dates have advantages
over *C dates because they (i) have higher
precision and (ii) do not require indepen-
dent calibration. The advent of TIMS
230Th dating provided impetus for research-
ers to drill for deglacial sequences of corals,
with the goal of obtaining long, high-reso-
lution records of deglaciation.

Two sequences that cover most of de-
glaciation have been drilled and analyzed:
the Barbados sequence (4), which covers
the complete deglaciation, and the Papua
New Guinea sequence (5, 6), which cov-
ers the last half of deglaciation. Peltier (1)
used the Barbados sea level record to tune
his model and tested model output against
the Papua New Guinea record. Model out-
put matched the Papua New Guinea
record well, apparently supporting the
model’s validity. '

However, Peltier (1) used depths for the
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Papua New Guinea and Barbados data that
were not corrected for tectonic uplift. The
Barbados uplift rate is small, 0.34 m per
thousand years (4), amounting to a correc-
tion of 7 m for the deepest portion of the
core. Thus, the Barbados correction can be
excluded without serious consequence. The
model results disagree only slightly with the
corrected Barbados record (Fig. 1). On the
other hand, the uplift rate at the Papua
New Guinea site is much larger. The rate of
1.9 m per thousand years is well known and
documented (5-7), and amounts to a cor-
rection of more than 20 m for the oldest
portion of the record (5, 6). Model results
disagree with the corrected Papua New
Guinea record (Fig. 1). Because the Barba-
dos curve was used for tuning, the Papua
New Guinea record is the only long inde-
pendent sea level curve upon which to test
model results. The inability of the model to
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Fig. 1. Discrepancy between model results (7)
and sea level data (4, 6). Deglacial sea level rise as
recorded in Papua New Guinea [squares, (6)] and
Barbados [circles, (4)] corals. Data points are cor-
rected for tectonic uplift at each site. Curves rep-
resent sea level rise at each of the two localities, as
predicted by Peltier’s (1) model.
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reproduce the Papua New Guinea curve

would appear to cast doubt on other model

results, including those related to the pa-

leotopography of the glacial ice sheets.

Thus, resolution of the discrepancy between

the Papua New Guinea data and the mod-
eling results is a central issue.

R. Lawrence Edwards
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Response: 1 am grateful for having attention
drawn to one of the secondary aspects of the
work described in my article (1). My pur-
pose was to advance a methodology where-
by the continental ice sheets that existed at
the Last Glacial Maximum (LGM) might
be “weighed,” even in absentia. The limited
application of this methodology (I) was
based on several assumptions, mainly that
(i) the ice sheets could be safely assumed to
be in isostatic equilibrium at LGM, (ii) the
viscosity of the planetary mantle was ap-’
proximately a function of radius only, and
(iii) the records of relative sea level history
based on coral sequences from Barbados and
the Huon Peninsula of Papua New Guinea
could be analyzed without making the usual
correction for a presumed constant local
rate of tectonic uplift. Edwards questions
the reasonableness of (iii), given the extent
to which the 0.34 mm year™! and 1.9 mm





