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Molecular Basis of the cauliflower 
Phenotype in Arabidopsis 

Sherry A. Kernpin," Beth Savidge,* Martin F. Yanofsky? 

Genetic studies demonstrate that two Arabidopsis genes, CAULIFLOWER and 
APETALA1, encode partially redundant activities involved in the formation of floral mer- 
istems, the first step in the development of flowers. Isolation of the CAULIFLOWER gene 
from Arabidopsis reveals that it is closely related in sequence to APETALA1. Like 
APETALAI, CAULIFLOWER is expressed in young flower primordia and encodes a 
MADS-domain, indicating that it may function as a transcription factor. Analysis of the 
cultivated garden variety of cauliflower (Brassica oleracea var. botrytis) reveals that its 
CAULIFLOWER gene homolog is not functional, suggesting a molecular basis for one of 
the oldest recognized flower abnormalities. 

I n  Arabidopsis, the genes that determine an 
early event of flower development, the spec- 
ification of floral meristem identity, include 
CAULIFLOWER (CAL), APETALAl 
(API), and LEAFY (LFY) (1, 2).  In apl 
single mutants, sepals are replaced by leaf- 
like organs, and petals generally fail to ini- 
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tiate (3). Axillary floral meristerns arise at 
the base of these leaf-like organs, producing 
secondary flowers that resemble the pheno- 
type of the primary apl mutant flower (Fig. 
1B). When the apl mutation is combined 
with mutations in CAL, cells that would 
normally constitute a floral rneristetn instead 
behave as an inflorescence meristem, giving 
rise to additional meristerns in a spiral phyl- 
lotaxy (2).  The resulting cauliflower pheno- 
type has an extensive proliferation, of meri- 
stems at each position that in wild-type 
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would give rise to a single flower (Fig. 1C). 
Plants homozygous for mutations in CAL are 
phenotypically wild-type, indicating that 
APl is able to compensate for the loss of 
CAL. These genetic data indicate that CAL 
and API encode partially redundant activi- 
ties. The APl gene product contains a re- 
gion, termed the MADSdomain (4), that - 
functions as a sequence-specific DNA-bind- 
ing domain and has a high degree of similar- 
ity to transcription factors (5-7). We have 
isolated and characterized the CAL genes 
from Arabidopsis and the cultivated garden 
variety of cauliflower. 

n 
Genetic evidence that the CAL and AP1 1 

proteins may be functionally related suggest- 
ed similar DNA sequences, and DNA blot 
hybridization experiments revealed that the 
Arubidopsis genome contains a gene that is 
closely related to APl. This gene was isolat- 
ed (8) and identified as a member of the 
family of Arabhpsis MADS-box genes 
known as AGLs (AG-like), and therefore it 
was initially termed AGLlO. AGLlO en- 
codes a putative 255-amino acid protein 
(Fig. 2B) of 30.1 kD and a pI (isoelectric 
point) of 8.78. The AGLlO protein contains 
a MADS-domain, suggesting that it is a tran- 
scription factor. The MADS-domains of 
AGLIO and AP1 are markedly similar, dif- rner~sterns. 
fering in only 5 of 56 amino acid residues, 4 
of which remesent conservative redace- 
ments. overail, the putative AGLlO p;otein 
is 76% identical to AP1; with allowance for 
conservative amino acid substitutions, the 
two proteins are 88% similar. These data 
suggest that AGLlO and AP1 likely recog- 
nize similar target sequences and thus most 
likely regulate many of the same genes nec- 
essary for floral meristems to acquire their 
identity. 

AGLlO was mapped (9) to the approxi- 
mate location of CAL, as determined by 
classical genetic means (2). To conclusively 
determine ifAGLlO corresponds to CAL, we 
used a genomic fragment spanning the 
AGLlO gene to transform cd-1 apl-1 plants 
( 10). Four independent lines transformed 
with AGLlO show a complementation of the 
cathjbuer phenotype (Fig. 1, D to F), dis- 
playing a range of phenotypes similar to 
those exhibited by apl mutants (2). These 
results demonstrate that AGLlO corresponds 
to CAL. In addition, they show that CAL 
can function not only to specify floral mer- 
istems, but in some instances can completely 
substitute for APl in specifying petals. 

In order to begin to dissect the regions of 
functional importance in the CAL protein, 
we analyzed four cd alleles. Sequence anal- 
ysis of the cd-1 allele, which exists in the 
wild-type Wassilewskija (WS) ecotype, re- 
vealed a cluster of three amino acid differ- 
ences in the seventh exon, relative to the 
wild-type gene product from Landsberg 
erecta (Ler) (Fig. 2A). It is likely that one or 

Fig. 2. CAL gene struc- A 
ture and sequences. (A) 
Exon-intron structure of I 
Arabidopsis Ler CAL 
gene. Exons are shown 
as boxes and introns 
as a solid line. Sizes 
(in base pairs) are indi- 
cated above. Locations 
of changes resulting 
in mutant alleles are 
indicated bv arrows. 
MADS- and K-boxes 
are hatched. (B) De- 
duced amino acid se- 
quences of CAL cDNAs 
isolated from Arabidop- 
sis thaliana Ler (CAL), 

D 

CAL M O R O R - I ~ ~ Q V T r S l F R R T a ~ Q I I ~ S L S  50 
BOCAL M A H I 
BObCAL M A H I 
API 

CAL MlCLlFISSESCMEKVLERYERYSYAERQLIAPDSHVNAQTNWSMUSEL 100 
BOCAL H K KV V 
B o W A L  K K 
AP1 TD I E D - -  N 

C AL KAKI 150 
BOCAL D S I I E  D S H 

Brassica oleracea (Bo- w D S I I E  D H 

CAL), and Brassica 01- D Q A  P E  D T Y 

eracea var. botrytis ,, ESLNHLORKEKEIQEENSMLTKQIKERENILKTKQTQCEQLNRSVDDVPQ 200 

(BobCAL). The corn- B ~ C A L  L V A  R s R H N S  Q H W A  

plete Arabidopsis se- B O W L  * L A s R H N S  Q H W A  

quence is displayed. I E K A Q  S K RAQ E WD Q QGHNMP - 

Other Sequences are ,a PQPFQHPHL---YMIAHQTSPFLNMGGLYQGECQTAMPRNNLDLTLEPIY 247 

shown directly below B ~ C A L  QU .fM ----- AS M Y P V  R 

the Arabidopsis se- B o w =  QU m ---.- AS M Y P V  R 

quence where they dif- L P QHQIQHP LS P ED PM D E V 

fer. The AP1 sequence cAL NY-LGCYAA* 

is shown for compari- BOCAL CN Y F  

son. The MADS-domain B O w A L  CN YF 

is indicated in bold. The CN F 

K-domain is underlined. 
Asterisk, stop codon. GenBank accession numbers are as follows: Arabidopsis CAL (L36925), BoCAL 
(L36926), and BobCAL (L36927). Single-letter abbreviations for the amino acid residues are as 
follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, 
Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 
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more of these amino acid differences is re- similar to that of the cal-1 allele (12). Se- 
sponsible for the cadflower phenotype, be- quence analyses revealed a single missense 
cause this gene is expressed normally and mutation for each (Fig. 2A). It is likely that 
correctly spliced in the WS background because mutations in the cal-2 and cal-3 
(I 1). We isolated three cal alleles, designated alleles lie in the MADS-domain, they affect 
cal-2, -3, and -4, which exhibit phenotypes the ability of CAL to bind DNA and thus to 

Fig. 3. CAL RNA accumulation in wild-type flowers. Longitudinal sections of Arabidopsis (A and B) and 
B. oleracea (E to H) wild-type inflorescences, and Arabidopsis inflorescence stem tissue (C and D) 
hybridized with CAL-specific antisense mRNA probes. Left column, bright-field photographs; right 
column, bright- and dark-field (red filter) double exposures. (A and B) CAL RNA is first detected in stage 
1 floral primordia, when the floral meristem is first distinguishable from the inflorescence meristem. It is not 
detected in the inflorescence meristem. CAL RNA continues to accumulate uniformly throughout the 
floral meristem until stage 3, at which time it begins to be excluded from the cells that will give rise to the 
stamens and carpels. At stage 4 and later stages of development, CAL RNA is detected at low levels in 
cells that will give rise to sepals and petals, and is not detected in the cells that will give rise to stamens 
and carpels. (C and D) Unlike AP1, CAL RNA is detected at high levels in the vascular tissue of the 
inflorescence stem. (E and F) As seen in Arabidopsis, BoCAL RNA accumulates throughout the floral 
primordia of Brassica oleracea early in development and is later (G and H) excluded from cells that will give 
rise to stamens and carpels. Numbered arrows indicate the stage of development of the floral primordia 
(22). im, inflorescence meristem. Size bar represents 50 Fm. 
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activate its target genes. Because the cal-4 
allele contains a substitution in the K-do- 
main, a motif thought to be involved in 
protein-protein interactions (3, this muta- 
tion may affect the ability of CAL to form 
homodimers or to interact with other pro- 
teins such as AP1. 

To  characterize the temporal and spatial 
Dattern of CAL RNA accumulation. and to 
see if this pattern revealed insights into the 
differences in CAL and AP1 activities, we 
performed RNA in situ hybridizations with 
a CAL-specific probe (Fig. 3, A to D) (13). 
As with APl (6, 14), CAL RNA accumu- 
lates in young flower primordia, consistent 
with the ability of CAL to substitute for 
APl in specifying floral meristems. In con- 
trast to API, whose RNA accumulates at 
high levels throughout sepal and petal de- 
velo~ment. CAL RNA is detected onlv at 
very low levels in these organs. This sug- 
gests that CAL is unable to substitute for 
API in specifying sepals and petals, at least 
in part as a result of the relatively low levels 
of CAL RNA in these developing organs. 

Studies of two distantly related dicot 
plant species, Arabhpsis and Antiwhinum, 
have demonstrated that the genes control- 
ling flower development are highly con- 
served. The cauliflower phenotype in Arabi- 
dopsis is similar to the inflorescence struc- 
ture that develops in the closely related 
species Brassica oleracea var. bonytis ( IS), 
the cultivated garden variety of cauliflower, 
indicating that the CAL gene may contrib- 
ute to the cauliflower phenotype of this ag- 
riculturally important species. To investi- 
gate this possibility, we have isolated the 
CAL gene homologs from a Brassica oleracea 
line that produces wild-type flowers, 
BoCAL (Fig. lG),  and from Brassica okra- 
cea var. bonytis, BobCAL (Fig. 1H) (16). 

To  determine if the BoCAL gene from 
Brassica okracea is expressed like its Arabi- 
dopsis counterpart, we performed RNA in 
situ hybridizations (13). As seen in Arabi- 
dopsis, BoCAL RNA accumulates uniformly 
in early floral primordia and is later exclud- 
ed from the cells that will give rise to 
stamens and carpels (Fig. 3, E to H). DNA 
sequence analyses revealed that the open 
reading frame of the BoCAL gene is intact, 
whereas that of the BobCAL gene is inter- 
rupted by a stop codon in exon 5 (Fig. 2). 
The resulting BobCAL protein product is 
truncated after only 150 of the wild-type 
255 amino acids. Because similar stop 
codon mutations in the fifth exon of the 
Arabhpsis APl gene result in plants having 
a severe apl phenotype (2, 17), it is likely 
that the BobCAL protein is largely non- 
functional. These molecular data suggest 
that. as in Arabidobsis. the molecular basis . , 

for the cauliflower phenotype in Brassica 
oleracea var. botrytis is in part due to a 
mutation in the BobCAL gene. It will be 



interesting to determine whether the Bras-
sica oleracea var. botrytis API gene is also 
nonfunctional. Additional experiments, 
such as complementation of the cauliflower 
phenotype in botrytis, will further define the 
role of BobCAL in this crop plant. 
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Autosomal recessive lamellar ichthyosis 
(LI) is a congenital disorder of keratiniza-
tion [MIM (Mendelian Inheritance in 
Man) 242100, estimated incidence 
1:250,000]. Neonates are often born en­
cased in a tough and inelastic film-like 
membrane that fissures easily, resulting in a 
high risk of sepsis and dehydration. Within 
2 weeks the membrane sheds, revealing a 
lifelong disfiguring disease characterized by 
generalized large scales and variable redness 
of the skin (I). The renewal rate of prolif­
erative basal keratinocytes is strongly en­
hanced in affected individuals, and this is 
manifested as thickened epidermis and in­
creased nail and hair growth (2). The ge­
netic origin of LI is unknown, and the 
absence of biological or molecular markers 
has contributed to disagreements on classi­
fication of the disease (I). 

Transglutaminases (TGs) are a super-
family of enzymes that catalyze transamida-
tion of glutamine residues, a reaction asso-
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ciated with a wide variety of physiological 
processes such as blood clotting, cytoplas­
mic coagulation in apoptosis, keratiniza-
tion, hair follicle formation, fertilization, 
and dimerization of interleukin-2 in nerves 
(3). The keratinocyte form of TG (TGK) 
mediates Ne-(7-glutamyl)lysine cross-
linkage (4) during formation of the corni-
fied cell envelope (CE), a distinct and 
highly insoluble structure of 15-nm thick­
ness that replaces the plasma membrane 
(PM) in terminally differentiating kerati­
nocytes (5). This process involves the se­
quential cross-linking of CE precursor pro­
teins such as involucrin; small, proline-
rich proteins; and loricrin on the inner 
side of the PM (5). Simultaneously, the 
PM is replaced by H-hydroxyacyl-sphin-
gosine lipids covalently bound to the outer 
surface of the protein CE (5). TGK is 
mostly expressed on the PM in upper spi­
nous and granular cell layers of stratified 
squamous epithelia (4). About 5 to 10% of 
TGK activity is found in the cytoplasmic 
fraction and may account for the final 
steps of CE cross-linkage (4). TGK activ­
ity requires a catalytic thiol center in the 
enzyme and is sensitive to Ca 2 + (3). The 
human TGK gene has at least two se­
quence variants, contains 15 exons, and is 
located on chromosome H q l l (TGMI 
locus) (6). 

In previous work, we observed that af­
fected individuals in two families with LI 
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Lamellar ichthyosis is a severe congenital skin disorder characterized by generalized 
large scales and variable redness. Affected individuals in three families exhibited 
drastically reduced keratinocyte transglutaminase (TGK) activity. In two of these fam­
ilies, expression of TGK transcripts was diminished or abnormal and no TGK protein 
was detected. Homozygous or compound heterozygous mutations of the TGK gene 
were identified in all families. These data suggest that defects in TGK cause lamellar 
ichthyosis and that intact cross-linkage of cornified cell envelopes is required for 
epidermal tissue homeostasis. 
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