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Domain Shapes and Patterns: The 
Phenomenology of Modulated Phases 

Michael Seul and David Andelman* 

A wide variety of two- and three-dimensional physical-chemical systems display domain 
patterns in equilibrium. The phenomenology of these patterns, and of the shapes of their 
constituent domains, is reviewed here from a point of view that interprets these patterns 
as a manifestation of modulated phases. These phases are stabilized by competing 
interactions and are characterized by periodic spatial variations of the pertinent order 
parameter, the corresponding modulation period generally displaying a dependence on 
temperature and other external fields. This simple picture provides a unifying framework 
to account for striking and substantial similarities revealed in the prevalent "stripe" and 
"bubble" morphologies as well as in commonly observed, characteristic domain-shape 
instabilities. Several areas of particular current interest are discussed. 

A surprisingly diverse set of physical and 
chemical systems exhibit macroscopic pat- 
t e r n  and textures. In general, simple mor- 
phologies of some degree of regularity pre- 
dominate: These include, notably, stripes 
and circular droplets ("bubbles") in two- 
dimensional (2D) systems, and sheets, 
tubes, and spherical droplets embedded in a 
homogeneous three-dimensional (3D) ma- 
trix. The predominance of a small set of 
morphological features leads to pattern of 
strikingly similar appearance, irrespective of 
the details of microscopic structure and in- 
teractions (1-4) (Fig. 1). Systems range in 
diversity from a type I superconducting film 
in its intermediate (equilibrium) state (Fig. 
1A) to a (nonequilibrium) chemical mix- 

acids, whose polar groups endow them with 
a permanent (or induced) electric dipole 
moment (Fig. 3, A and B). Similarly, 3D 
assemblies of lipids as well as diblock copoly- 
mers adopt spatial distributions of constitu- 
ents in the form of either sheets (lamellae) 
(Fig. 3C) or hexagonally arranged cylindri- 
cal tubes (Fig. 3D) (14). 

The widespread appearance of macro- 
scopic and mesoscopic equilibrium pat- 
terns displaying common structural fea- 
tures and exhibiting common modes of 
evolution suggests a possible universal 

ture displaying complex steady-state reac- 
tion-diffusion (Turing) pattern (Fig. 1C). 
On  the other hand, the characteristic scale, 
or period, of the patterns can vary from 
mesoscopic scales of hundreds of angstroms 1 
in (''ripplen) phases of certain phos~holip- 
ids (Fig. 1B) to as much as centimeters in 
convective roll patterns generated bv a Rav- 
leigh-Benard instability l ~ i ~ .  1 D). ' 

Figures 2 and 3 depict examples of the 
I 

- 
simplest spatial configurations of textures 
observed in two and three dimensions (5- 
11 ). Linear arrays of stripes and hexagonal 
arrays of bubbles are ubiquitous in thin films 
of magnetic garnets (Fig. 2, A and B) (1 2, 
13) and in ferrofluids (Fig. 2, C and D). 
Stripe and bubble morphologies also arise in 
Lanemuir films: These are insoluble mono- " 
molecular layers adsorbed at an air-water 
interface that are composed of amphiphilic 
molecules, such as phospholipids and fatty 
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mechanism to account for the formation 
of these textures. The approach we adopt 
here is to view them as a manifestation of 
modulated phases. Their periodic spatial 
organization is attributed to the presence 
of competing interactions favoring spatial 
inhomoeeneities in an otherwise uniform " 
ground state. In this picture, domains rep- 
resent modulations in some order Daram- 
eter (15), such as magnetization, as in 
epitaxial films of rare earth garnets, and 
polarization, as in ferroelectric films and 
Langmuir monolayers. The modulation 
period is set by the relative strengths of 
the competing interactions and can be 
tuned by varying parameters such as tem- 
perature and applied magnetic, electric, or 
other fields. 

A wide variety of systems displaying pat- 
terns have all been analyzed within the 
framework of competing interactions (1 6 -  
34) (Table 1). We comment in more detail 
on a number of these examples in the fol- 
lowing sections. The related phenomena of 
structure formation in colloidal suspensions 
(35) and superlattice formation in adsor- 

Fig. 1. Sampling of stripe domain patterns in physical and chemical systems. (A) Alternating supercon- 
ducting and normal regions in a foil lead of a type I superconductor, in its intermediate state. The pattern 
was induced by a normal magnetic field and rendered visible by a powder decoration technique; period, 
-7 pm. [Adapted from (I)] (B) Pp. ("ripple") phase in a vesicle composed of the phospholipids dimyris- 
toylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) (95:5 molar ratio), 
rendered visible after rapid freezing by freeze-fracture electron microscopy; period, -240 A. [Adapted 
from (211 (C) Stationary ("Turing") patterns in a chemical reaction-diffusion system, rendered visible by 
preferential absorption of light; period, -0.25 mm. [Adapted from (3)] (D) Snapshot of fluctuations 
preceding the appearance of a convective roll pattern in CO, gas undergoing a Rayleigh-Nnard 
instability, rendered visible by a shadowgraph technique; period, -1 cm. [Adapted from (4)] 
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bate films on crystalline substrates (36) sheet on which two partially incompatible 
have recently been reviewed elsewhere and molecular species, say A and B, can diffuse 
will not be addressed here. laterally. For the purpose of this illustration, 

we assume that A and B molecules form an 
Competing Interactions and incompressible film that fully covers the 

Modulated Structures sheet. The state of the system can then be 
characterized by selecting the relative com- 

Interactions of long range. To illustrate the position (or mole fraction) + to serve as an 
idea of modulated phases, we consider a 2D order parameter: + = 1 indicates a system of 

Fig. 2. Domains in magnetic solids and fluids. (A) Stripes ana (DJ DuDDle pnase In rerromagnerlc garnet 
film of 13 pm thickness grown on the (1 11) face of gadolinium gallium gamet (GGG), rendered visible by 
the Faraday effect; period, -10 pm. [Adapted from (5)] (C and D) Ferrofluid confined between two glass 
plates in magnetic field normal to the fluid layer, exhibiting (C) labyrinthine [period, -1 cm; adapted from 
(6)] and (D) bubble [period, -4 pm; adapted from (7)] states. 

s in 2D and 3D organic systems. (A and 6) Monomolecular 
organic (Langmuir) film, confined to an air-water interface, exhibiting (A) stripe [period, -3.5 pm; adapted 
from (8)], and (B) bubble [period, -20 pm; adapted from (9)] morphologies, rendered visible by fluores- 
cence microscopy. (C and D) Solvent-cast film of block copolymers exhibiting (C) stripe [period, -400 A; 
adapted from ( lo)] and (D) bubble [period, -160A; adapted from ( 7  I ) ]  morphologies, the latter in the form 
of hexagonal arrays of cylindrical domains, rendered visible by heavy metal staining of thin sections 
imaged by transmission electron microscopy. 
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pure A composition, and + = 0 corresponds 
to pure B composition. The incompatibility 
of the molecular constituents will favor seg- 
regation into coexisting A-rich and B-rich 
phases, described by the respective values +, and +B of the order parameter and 
delineated by boundaries with line tension 
y. This line tension expresses the energy 
cost incurred in forming boundaries be- 
tween regions of differing composition and 
thus favors minimization of the total length 
of the boundary: As a result, A-rich and 
B-rich regions tend to grow. 

In the vicinity of the critical demixing 
point of A and B, the order parameter + = 
+(r) and its spatial variations are small, and 
the free energy 9+ of the mixture may be 
phenomenologically expressed as a (Ginz- 
burg-Landau) expansion in powers of +(r) 
and V+ 

where 90 captures (uniform) bulk contribu- 
tions and assumes the form of a (Landau) 
expansion in powers of + (37). The second 
term represents the energy cost associated 
with local variations in +, notably those 
associated with domain walls. When these 
variations are small, the gradient-squared 
term with its "stiffness" coefficient b repre- 
sents the lowest order approximation to the 
energy cost of creating the wall. In our 2D 
model, this wall energy is given simply as 
the product of line tension y and domain 
wall length 1. 

This situation is substantially altered 
when the two species carry dipole moments 
pA and kB. For simplicity, we set one of the 
moments to zero: p.B = 0 and p. = p.,. If all 
molecular dipoles point along the direction 
normal to the sheet (Fig. 4A), they interact 
pairwise by means of a repulsive dipole- 
dipole electrostatic interaction. In the con- 
tinuum limit, this dipole-dipole interaction 
may be represented in the form of an inte- 
gral over the 2D monolayer 

where the double spatial integral is taken 
over all possible dipole pairs (hence the 
prefactor of !h) and where g(r, r') = I r - 
rr  1 -3 expresses the long-range nature of the 
dipole-dipole interaction. The sign of % is 
important: Its origin lies in the fact that Eq. 
2 expresses the interaction energy of specific 
spatial configurations of a given (and hence 
fixed) number of dipoles, as compared to 



that of a uniform spatial arrangement of the 
same set of dipoles (38). The second identity 
reflects a transformation of the double spa- 
tial integral into a single integral in Fourier 
space, which is always possible when g(r, r ' )  
= g( I r - r '  I ); here, G(q) and +, represent 
the (2D) Fourier transforms of g(  1 r - r r  1 ) 
and +(r) ,  respectively. 

The combined free energy % = %+, + 
?Pd, obtained from Eqs. 1 and 2 with Fourier 
transform F (q) = [- p2G (q) + bq2]/2, ex- 
hibits a minimum at a finite wave number 
q" # 0 because g(q) is positive and varies 
as I q l  for small q. This selection of an 
optimal q accounts for the emergence of a 
new length scale: Instead of macroscopic 
phase separation into A-rich and B-rich 
regions, we now expect the formation of a 
periodic pattern of alternating A-rich and 
B-rich domains. That is, the order parame- 
ter field +(r)  is spatially modulated as a 
result of the competition between the (non- 
local) dipolar interaction and the line ten- 
sion (39). 

The same considerations apply at low 
temperature for sharp domain walls. Where- 
as %+, tnay be reduced by an increase in 
domain size d (recalling that the two species 
are incompatible), Sd is reduced by the 
(continued) subdivision of domains. Con- 
sequently, the overall free energy, % = B +, + Bd, favors (16, 17) the formation of 
domains of a preferred size dY = d[y/(AP)2], 
where AP = b(+* -+B) (40). The ratio 
NB (AP)2/y, generally referred to as the 
bond number, may be tuned by way of the 
temperature- or field-dependence of the 
pertinent interactions, with consequent ad- 
justments in.optima1 domain size and mod- 
ulation wavelength. As we will see below, 
NB also governs the stability of shapes as- 
sumed by individual domains. The above 
model suggests a physical origin (1 6 ,  17) of 
the patterns observed in Langmuir mono- 
layers of amphiphiles carrying permanent 
molecular dipoles (Fig. 3, A and B). Pat- 
terns appear as temperature or lateral (sur- 
face) pressure is varied. 

Although not phrased in this language, 
the idea of modulated phases with prese- 
lected equilibrium periodicity is "expressed 
in the pioneering theories of spontaneous 
domain formation in magnetic materials 
(21, 41) and in the intermediate state of 
type I superconductors (23). In the latter, 
the sample shape-dependent distribution of 
normal (N)  and superconducting (S) re- 
gions is determined by the competition be- 
tween the interfacial free energy ys, and a 
demagnetizing field (42). In a slab geome- 
try, both droplet and stripe patterns are 
observed (1 ). 

Nonlocal interactions associated with 
polarization, magnetization, and elastic 
strain have all been reported to lead - to 
modulated phases. Polarization effects, re- 

lated to variations in the work function 
between bare and adsorbate-decorated re- 
gions of a metal surface, have been shown 
to stabilize an equilibrium pattern of adsor- 
bate domains on the surface (18). The in- 
t e r~ lav  between oolarization and elastic 

L ,  

strain has been invoked to account for do- 
main structures in epitaxial ferroelectric 
films (1 9)  and in ferroelectric crystals (43). 
Furthermore, relaxation of surface strain has 
been proposed to account for the arrange- 
ment of certain reconstructed semiconduc- 
tor surfaces in the form of domains of alter- 
nating orientations (20, 44). A direct anal- 
ogy may be drawn between polarization in 
the examples just discussed and magnetiza- 
tion in a thin laver of ferrofluid 17. 45. 46) ~, , , 

and in a magnetic garnet film (47). In slabs 
of these (respectively liquid and solid) mag- 
netic systems, a sample shape-dependent 
demagnetizing energy plays the role of the 
depolarizing term (Eq. 2)  in the dipolar 
sheet model of Langmuir films (47). 

Modulated phases in 3D systems are en- 
countered in a variety of polymeric assem- 
blies, where this phenomenon is generally 
referred to as microphase separation. Specif- 
ically in diblock copolymers (29, 30), effec- 
tive long-range interactions (equivalent in 
ranee to Coulombic interactions) reflect the " 

connectivity of the copolymers' molecular 
blocks, which precludes compositional fluc- 
tuations on large length scales (48). Lamel- 
lar structures, hexagonal arrays of cylinders, 

and cubic arrays of spheres (along with more 
complex phases of cubic symmetry) have all 
been observed (14, 31 ). These structures 
also form in mixtures of diblock copolymers 
and homopolymers (32) (see Fig 3, C and 
Dl, and lamellar and cellular Datterns are , , 

expected for diblock copolymer films grafted 
to a surface (49). Recently,.. it has been 
recognized that even in systems as complex 
as blends of charged homopolymers, charged 
diblock copolymers (33), and aqueous solu- 
tions of weakly charged polyelectrolytes (34, 
50), spatial modulations in composition 
should be expected. 

Coupled order parameters. Modulated 
phases may also arise in systems described 
by two (or more) coupled order parameters, 
each (individually) favoring a different 
eauilibrium state. T o  illustrate the salient 
idea, we return to the 2D sheet introduced 
above (24, 51 ). As before, the free energy of 
the system contains a contribution, %+,, 
reflecting the demixing of A and B species. 
Instead of considering long-range interac- 
tions between molecular dipoles, we now 
allow for out-of-plane (bending) distortions 
of the sheet. Specifically, we assume that 
the two molecular 'constituents display an 
affinity for regions of different local curva- 
ture of the sheet (Fig. 4B). This tendency 
can be modeled by introducing a coupling 
term between the local composition +(r)  
and the curvature of the sheet. Provided 
that distortions remain small, we may write 

Table 1. Illustrative list emphasizing the wide variety and diversity of 2D and 3D systems in which 
modulated phases have been described. Morphologies are classifled as stripes (S), islands ( I ) ,  and 
bubbles (B) in 2D and as lamellae (L), hexagonally packed cylinders (H), and cubic arrays of spheres (C) 
in 3D. Order parameters include composition (a), polarization (P), orientation of the surface reconstruc- 
tion (SR), normal magnetization (M,), the ratio p = (p, = p,,) (where p, and p,, represent, respectively, 
the normal and superconducting fractions of a type I superconducting film), projection of the molecular 
director into the plane of the layer (c-dir), and the chirality field = sin[G(q - a)] (where cp and 4 denote, 
respectively, the tilt and bond field azimuthal orientation). Sources of competition include normal polar- 
ization (P,), polarization associated with variations in the work function (Pd), magnetic field (H), and 
curvature (K). 

System Typical Mor- Order Source of Ref, 
length scale phology parameter competition 

Langmulr films 
Adsorbates on metals 
Ferroelectric films 
Semiconductor surface 
Ferrofluids 
Magnet garnets 
Type I superconductor films 
Membranes, vesicles 
"Rlpple" (P,,) phase 
Freely suspended lhquld 

crystal films 
Convective patterns 
Turing patterns 
Diblock copolymers 
Co- and homopolymer 

mlxture 
Charged diblock copolymer 
Polyelectrolyte solution 

@ or density 
coverage, 

P 
SR 
a 
Mz 

P 
a 

c-dir * 

pz 
p, 

Stress 
Surface stress 

H 
H 
H 

K 

c-dir bend 
distoltion 

(Covalent), 
linkage 

Counterion 
entropy 
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(3) 

where h(r) represents the height profile of 
the sheet (relative to a flat reference state), 
u is its surface tension (not to be confused 
with the line tension introduced above for 
the flat monolayer), and K is its bending 
modulus; A, the coefficient of the last term 
in the expression, measures the strength of 
the coupling of local curvature V2h and 
local composition +, which we have includ- 
ed here to lowest (bilinear) order. This 
coupling term reflects the different affini- 
ties of the molecular constituents A and B 
of the model sketched in Fig. 4B for, respec- 
tively, convex (V2h > 0) and concave (V2h 
< 0) regions of the interface (52). This 

model describes a fluctuating fluid mem- 
brane. Minimization of the total free ener- 
gy, 9 = 9+ + 9, (Eqs. 1 and 3), with 
respect to the membrane shape {h(r)} yields 
(39) an effective free energy that depends 
only on +(r) 

where 9,, is defined in Eq. 1; b' = b - A2/u, 
and in analogy to Eq. 2, G(q) = (1/2)b'q2 
+ (A2d2u2)d is the 2D Fourier transform. 

Note that the original stiffness coefficient 
b is replaced by a reduced coefficient b'. A 
negative b', obtained when b < A2/u, signals 
the onset of a curvature instability of the 
sheet. This instability generates a pattern of 

Fig. 4. Competing interactions on flat and curved interfaces. (A) Schematic representation of dipolar 
domains at the air-water interface. Dipole-dipole interactions stabilize a periodic arrangement of A-rich 
and B-rich domains; A and B are amphiphiles, assumed to cany dipole moments p, >> p,, - 0. (B) 
Schematic representation of an undulating sheet (membrane), composed of two incompatible molecular 
species A and B. The packing of regular and inverted triangular shapes into A-rich and B-rich domains 
favors, respectively, convex and concave distortions of the membrane. 

domains that differ in composition as well as 
in local curvature and thus assume convex or 
concave shapes. In complete analogy to the 
dipolar case (Eq. 2), the characteristic do- 
main size corresponds to the existence of a 
minimum in the free energy at a nonzero 
wave number q* - 2 ~ / d  + 0 (39). As before, 
d is set bv the ratio of coefficients for 
the com~eting terms in the free enem: d - .z .z, 

~ ( ~ 2 d u 2 ) l l  b' 1 .  
The idea just sketched has been gener- 

alized to apply to two-component biolog- 
ical (bilaver) membranes and am~hi~hi l ic  . , .  
monolayers capable of shape defoimaiions, 
as well as to deformations of cylindrical 
and spherical shapes of closed-form mem- 
branes (vesicles and liposomes) (24, 51, 
53). Other generalizations involve the 
coupling between membrane curvature 
and spatial variations of the molecular tilt, 
as in a recent model (25) of the Pg, (rip- 
ple) phase formed by certain phospholip- 
ids (Fig. 1B). A related model (26) con- 
siders the coupling between the variations 
in molecular tilt and a scalar chiral order 
parameter and may offer an explanation of 
recent observations of stable patterns in 
surface-ordered, freely suspended films of 
achiral liquid crystals (54). Similar ideas 
have been advanced to account for pattern 
formation in free-standing liquid crystal 
films composed of chiral molecules (55, 
56). Related models of coupled elastic in- 
teractions involving splay and twist distor- 
tions of the molecular tilt have been in- 
voked to explain stripe patterns in 
nematic liquid crystal films in a magnetic 
field (57). 

Stationary rolls (stripes) and hexagons 
(bubbles), displayed by nonequilibrium dis- 
sipative systems, notably those governed by 
competition between chemical reaction 
and diffusion (Fig. 1C) (3) and those ex- 
hibiting hydrodynamic instabilities (Fig. 
ID) (4 ,  58). mav under certain conditions . . . ,. 
also be considered within the current 
framework (59). 

Generic Phase Diagram 

Essentially equivalent mean-field theories 
for manv of the svstems discussed in the 
previous section have been based on a Ginz- 
burg-Landau free energy functional of the 
form of Eq. 2 or Eq. 4 and on order param- 
eter profiles in the form of simple sinusoidal 
modulations (39). The resulting phase dia- 
gram contains modulated stripe and bubble 
phases (60) separated by first-order phase 
transitions (Fig. 5). Similar phase diagrams 
have been derived for magnetic garnet films 
[modeled as a dipolar Ising ferromagnet] 
(22), Langmuir monolayers (1 7), adsorbates 
on metal surfaces (1 8), equilibrium shapes of 
two-component vesicles (5 1 ) , and liquid 
crystal films of achiral molecules undergoing 
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chiral symmetry breaking (26). Moreover, a 
mean-field theory of diblock copolymers 
yields the 3D analog of this phase diagram, 
containing lamellar, cylindrical, and cubic 
phases (14, 29), which are also expected for 
aqueous polyelectrolyte solutions (34, 50). 

Phase diaerams have also been calculat- 
ed for the caie of domains with sharp walls, 
encountered at low temperatures ( T  << T,) 
(61). For magnetic garnet films, attempts 
have been made to connect the low-tem- 
perature and high-temperature regimes to 
predict, for example, the temperature de- 
pendence of the modulation period (62, 
63). 

Order parameter fluctuations have been 
shown, in some cases, to eliminate the crit- 
ical point from the phase diagram in favor 
of a (weakly) first-order phase transition, in 
a manner first suggested by Brazovskii (64). 
Pertinent analvtical calculations as well as 
simulations have been performed for block 
copolymers (65), polyelectrolyte solutions 
(50), convective roll patterns (58), liquid 
crystal films with spontaneously broken 
chiral symmetry (26), and magnetic films 
(66). The essential deviation from mean- 
field behavior results from the emergence of 
an instability of the uniform (disordered) 
~ h a s e  at finite wave number a* # 0. Some 
experimental evidence for such fluctuations 
has been recently presented for block co- 
polymers (3 1 ) and for Rayleigh-Benard 
convection patterns (4, 27). 

Domain Shape Instabilities 

In addition to controlling the period of 
condensed modulated ~hases. the balance 
of competing interactions also determines 
the stability of the shapes assumed by indi- 
vidual, isolated domains. Consider a single, 
2D circular domain of dipoles, with dipoles 

I Y *  
Temperature Tc 

Fig. 5. Schematic mean-field phase diagram of 
modulated phases. Field-temperature (H-T) plane 
for a 2D system displaying stripe (S) and bubble 
(B) phases. The lines indicating first-order S-B and 
B-uniform phase transitions merge at a critical 
point T,. Also indicated is the geometry of stripe 
and bubble arrays for magnetic garnet films (22); 
arrows indicate the magnetization direction. 

oriented as in Fig. 4A and embedded in a 
nonpolar matrix. As long as line tension 
predominates, a circular domain shape will 
be preferred because this minimizes the 
length of domain boundary. As repulsive 
interactions between individual dipoles 
grow in relation to the line tension, that is, 
as the bond number NB increases, instabil- 
ities ensue to produce elongated and 
branched shapes (Fig. 6) (67). The first 
such instability occurs at a critical (thresh- 
old) value of N, when the circular domain 
becomes unstable to an elliptic distortion. 
A similar effect is observed when the do- 
main size increases beyond a critical size 
with fixed N,; this is a manifestation of the 
long range of the repulsive interaction. 

Shape instabilities have been investigat- 
ed theoretically and experimentally in a 
diverse set of systems including magnetic 
garnet films (12, 68), ferrofluid layers (6, 
45, 69), and Langmuir films (70-72); an 
elliptical shape distortion has also been re- 
ported for pendant ferrofluid drops (73). 
Closely related is the distortion of an ini- 
tially smooth ferrofluid surface into an array 
of spikes as the applied magnetic field sur- 
passes a characteristic threshold, a phenom- 
enon referred to as the magnetic field in- 
stability (6, 74). 

A buckling instability of stripe domains, 
described long ago in films of type I super- 
conductors (1 ), has been studied in ferroflu- 
ids (45) and more recently in Langmuir 
films (75). The most prevalent in a series of 
(static) shape instabilities involve distor- 
tions of circular and linear reference states 

periments on ferrofluid bubbles (76). As 
with Langmuir films, where qualitatively 
similar observations have been made (72), a 
more rapid rate of increase of N, favors a 
higher symmetry (and shorter wavelength) 
of the dominant unstable mode. 

Pattern Evolution and Disorder 

We turn next to the evolution of patterns 
in response to adjustments of the modula- 
tion period d. In many cases, d varies in- 
versely with Ng' The resulting strain must 
be accommodated by appropriate rearrange- 
ments of the existing domain pattern. 

One of the simplest realizations of this 
phenomenon occurs in the ordered lamellar 
(stripe) domain phase of magnetic garnet 
films. Cooling in zero external field (Fig. 5) 
leads to an increase in d (62, 77). For a film 
of fixed area. this im~lies that some lamel- 
lae must be eliminated from the pattern if 
the ordered state is to remain stable. This 
expulsion is accomplished by strain-induced 
creation and subsequent climb of edge dis- 
locations (5). Such dislocation-mediated 
period adaptation is also observed in con- 
vective roll patterns (27, 78). 

In general, the preservation of an initial- 
ly ordered state under tuning of d requires 
the number of domains N to be correctly 
matched, so that in a sample of constant 
area &, Nd2 - &. In fact, this represents 
an exceptional circumstance, and the pro- 
liferation of disorder is a far more prevalent 
scenario. Thus, for the introduction of dis- 
order in the aforementioned lamellar ar- 

(Fig. 6). The instabilities destabilizing a rangement of magnetic stripes, it suffices to 
circular contour display a dependence on decrease the period by raising the tempera- 
the rate of change of N,, which only re- ture. The requisite nucleation of additional 
cently has been examined in systematic ex- stripe domains for inclusion in the contract- 

Droplets 

I Fission / \Elliptic distortion 

Continued 1 fission / Elongation 

distortion 

I 1 Elongation I Branching 
Stripes 

2 
zt. < - 
II 

2" 

("Labyrinth") 

- 
1 nth Harmonic Bending 

Fig. 6. Shape instabilities. Linear 
stability analysis indicates that a sin- 
gle (isolated) domain will undergo a 
sequence of shape transitions as the 
balance of attractive and re~ulsive 
interactions, defined in terms' of the 
bond number N,, is adjusted (45, 
68, 69). 
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ing lamellar pattern is suppressed, and this 
constrains the number of stripes to remain 
fixed. To accommodate contraction under 
this constraint, the pattern undergoes a se- 
quence of stripe bending and branching 
instabilities in response to the temperature- 
induced strain (5. 79-81 ). reminiscent of . , , , 

an elastic response observed in smectic liq- 
uid crystal phases. Analogous zig-zag distor- 
tions are displayed by convective roll pat- 
terns (28, 82) and various realizations of 
Turing patterns (83). A further increase in 
strain can lead to the formation of topolog- 
ical defects whose unbindine mediates the u 

emergence of disordered, labyrinthine pat- 
terns (5).  These reveal remarkable structur- . , 
a1 similarities to states of turbulence in dis- 
sipative systems (3, 58, 83). 

An essential property of the patterns 
considered here is that they are composed 
not of rigid particles of fixed shape but rath- 
er of domains whose shape is susceptible to a 
variety of instabilities, as discussed above. A 
prominent instance of this coupling medi- 
ates the transformation between bubble and 
stripe patterns. This is predicated upon the 
elongation ("strip-out") of individual bub- 
bles or, in the reverse direction, upon the 
rupture of stripes. The strip-out of individual 
bubble domains, triggered by an imposed 
period decrease under the constraint of 
maintaining a fixed number of domains, fa- 
cilitates an identical evolution of a (multiply 
connected) disordered stripe domain pattern 
in magnetic garnet (1 2), as well as in Lang- 
muir (84) films (Fig. 7), irrespective of de- 

Fig. 7. Reversible "strip-out" instability in magnetic and organic thin films. Period reduction under the 
constraint of fixed overall composition and fixed number of domains leads to elongation of bubbles. (A) In 
magnetic gamet films, this is achieved (96) by raising the temperature [labeled in (B) in degrees Celsius] 
along the symmetry axis, H = 0 (period in bottom panel, -10 pm) (see Fig. 5). (B) In Langmuir films, 
composed of the phospholipid dimyristoylphosphatidic acid (DMPA) and cholesterol (98:2 molar ratio, pH 
1 I),  this is achieved by lowering the temperature at constant average molecular density [period in bottom 
panel, -20 pm, adapted from (84)l. 
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tails of molecular structure or composition. 
The available experimental evidence 

supports the view that pattern evolution in 
response to period adjustment represents a 
constrained optimization problem; that is, 
pattern configurations are selected to realize 
the correct modulation period, dictated by 
the prevailing balance of competing inter- 
actions. Frequently, additional constraints 
of a rather general nature preclude the for- 
mation of the ordered state. In particular, 
the number of domains in a given pattern is 
generally difficult to change (see, for exam- 
ple, Fig. 7). The evolving disordered pat- 
terns represent alternative morphologies, 
selected by a constrained free-energy mini- 
mization. As in other "frustrated" systems, 
many configurations of essentially identical 
free energy may then exist. 

Areas of Current Interest 

Dynamic and kinetics of patterns and instabil- 
ities. Recent experimental efforts, for exam- 
ple, in ferrofluid films (76) and Langmuir 
films (85), have begun to address the dy- 
namics of shape distortions in a quantita- 
tive way. As with structural features, strik- 
ing similarities are beginning to emerge in 
the dynamics of domain shape instabilities 
in different systems. In contrast to the con- 
ventional case, spinodal decomposition in 
systems with competing interactions re- 
flects the presence of an unstable mode (in 
equilibrium) at nonzero wave number (86), 
a feature previously alluded to in the con- 
text of the fluctuation spectrum in the uni- 
form phase. These and other aspects of crit- 
ical fluctuations, such as the determination 
of universality classes (66), are yet to be 
explored experimentally. 

The nucleation of domains at the first- 
order phase transition from the uniform to 
the bubble phase, and the subsequent do- 
main "ripening," is only now beginning to 
receive attention. Simulations on a variety 
of realizations of systems with competing 
interactions (87-89) reveal a crossover 
from an initial coarsening regime, dominat- 
ed by the fastest growing unstable mode, to 
the periodically modulated equilibrium 
state. Coarsening in Langmuir films has 
been recently investigated experimentally 
(90). A related experimental investigation 
is the measurement of the rate of nucleation 
of individual bubble domains in a Langmuir 
film with a significant intralayer compo- 
nent of the molecular dipole (91 ). 

Structural perturbations of modulated 
phases. The equilibrium structure of a given 
modulated phase may be subjected to a 
variety of perturbations arising from point 
impurities or line defects. A subtle effect of 
impurities on an ordered modulated phase is 
the destruction of true long-range position- 
al order by random pinning (92). Disclina- 
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tion lines frequently occur in the director 
field describing the tilt configuration in 
films of tilted liquid crystals, and these have 
been shown to act as a structural perturba­
tion on a coexisting modulated stripe phase, 
giving rise to a rather dramatic stripe defect 
pattern (54). The measurement of ("effec­
tive") elastic moduli of modulated phases 
might be feasible by probing the decay of 
imposed displacements of boundary layers 
(93)- Interfaces between stripe, bubble, and 
uniform phases and the presence of external 
boundaries constitute another source of 
structural perturbation whose effects are 
currently under theoretical investigation. 

Microscopic ordering and faceting of do­
mains. Of particular interest to modulated 
phases in organic systems is the effect of 
molecular ordering of constituent molecules 
on the shape of domains- Given a proper 
understanding of the basic domain shape, 
deviations may actually serve to detect the 
presence or absence of molecular structure, 
as in the sixfold symmetric distortion 
("faceting") of circular domains induced by 
a transition to a tilted phase of a Langmuir 
film (94)- Molecular chirality is another mi­
croscopic property that has been demon­
strated to affect stripe domains on macro­
scopic length scales: Elongating and branch­
ing stripes acquire a preferred handedness 
that is determined by the relative abun­
dance of molecular enantiomers (8, 95). 
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HIV Population Dynamics in Vivo: 
Implications for Genetic Variation, 

Pathogenesis, and Therapy 
John M. Coffin 

Several recent reports indicate that the long, clinically latent phase that characterizes 
human immunodeficiency virus (HIV) infection of humans is not a period of viral inactivity, 
but an active process in which cells are being infected and dying at a high rate and in large 
numbers. These results lead to a simple steady-state model in which infection, cell death, 
and cell replacement are in balance, and imply that the unique feature of HIV is the 
extraordinarily large number of replication cycles that occur during infection of a single 
individual. This turnover drives both the pathogenic process and (even more than mutation 
rate) the development of genetic variation. This variation includes the inevitable and, in 
principle, predictable accumulation of mutations such as those conferring resistance to 
antiviral drugs whose presence before therapy must be considered in the design of 
therapeutic strategies. 

DesDite an extensive international re- 
search effort, HIV infection remains incur- 
able and onlv modestlv treatable. The  in- 
fection of hukans with' this virus is charac- 
terized by three phases (1-4). Within sev- 
eral weeks after infection, there is a n  early 
phase with acute symptoms, extensive vire- 
mia, and large numbers of infected CD4- 
positive T cells in blood. Roughly coinci- 
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dent with the onset of the antiviral immune 
response (which includes antibodies and 
cytotoxic T cells), the amount of circulat- 
ing virus declines by a factor of 100 or more 
(5, 6), leading to a clinically latent phase of 
variable duration with low but constant 
amounts of virus and infected cells in cir- 
culation and, usually, very gradually declin- 
ing numbers of CD4+ T cells: After about 
10 years of clinical lateticy, the number of 
CD4+ T cells declines to very low values 
and the symptoms of acquired immunode- 
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