
C fold in several ways. The seven P strands 
of E-CAD1 are all connected by interstrand 
hydrogen bonds to form an almost complete- 
ly cylindrical P barrel. The Ig C domain, on 
the other hand, consists of two distinct P 
sheets to which additional strands are added 
to form other variants of the Ig fold (9). The 
greater twist of the p sheets required to form 
a cylindrical P barrel results in a more obtuse 
angle between the directions of the packed P 
strands in the CAD domain. Thus, the struc- 
tures of the two domains are virtually non- 
superimposable. The metal binding pocket 
found in E-CAD1 is absent in the Ig C 
domain (9), whereas the conserved disulfide 
bond between PB and PF of the Ig C fold is 
not present in CAD domains. Membrane- 
proximal CAD5 domains contain four con- 
served cysteine residues (Fig. 1C) that may 
form a disulfide bond or bonds (15). In light 
of the structures of E-CAD1 and an Ig do- 
main in CDZ containing a disulfide bond 
(9), the first cysteine residue of CAD5 (Fig. 
1C) is able to form a disulfide bond with the 
second or third cysteine of CAD5, thus sta- 
bilizing the PA'-PG pairing. 

Topological similarities between indi- 
vidual extracellular domains of cadherins 
and Ig CAMS identified here can be ex- 
plained either by divergent or convergent 
evolution. A n  ancestral CAM domain may 
have diverged into Ca2+-dependent and 
Ca2+-independent forms while retaining 
modular features that are still shared by the 
cadherin and Ig superfamilies. Alternative- 
ly, the independent evolution of analogous 
extracellular domains by these two super- 
families would attest to the stability and 
particular suiability of this P-barrel fold for 
cell-cell adhesion. 
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Transcription Factor ATFP Regulation by the 
JNK Signal Transduction Pathway 

Shashi Gupta, Debra Campbell, Benoit Derijard, Roger J. Davis* 

Treatment of cells with pro-inflammatory cytokines or ultraviolet radiation causes acti- 
vation of the c-Jun NH2-terminal protein kinase (JNK). Activating transcription factor-2 
(ATF2) was found to be a target of the JNK signal transduction pathway. ATF2 was 
phosphorylated by JNK on two closely spaced threonine residues within the NH2-terminal 
activation domain. The replacement of these phosphorylation sites with alanine inhibited 
the transcriptional activity of ATF2. These mutations also inhibited ATF2-stimulated gene 
expression mediated by the retinoblastoma (Rb) tumor suppressor and the adenovirus 
early region 1A (EIA) oncoprotein. Furthermore, expression of dominant-negative JNK 
inhibited ATF2 transcriptional activity. Together, these data demonstrate a role for the JNK 
signal transduction pathway in transcriptional responses mediated by ATF2. 

Activating transcription factor-2 [ATFZ 
(also designated CRE-BPI)] is a member of 
a group of transcription factors that bind to 
a similar sequence located in the promoters 
of many genes (1 ). There has been consid- 
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erable interest in the role of ATF2 because 
this transcription factor binds to several 
viral proteins, including the oncoprotein 
E1A (2, 3), the hepatitis B virus X protein 
(4), and the human T cell leukemia virus-1 
Tax protein (5). ATFZ also interacts with 
the tumor suppressor gene product Rb ( 6 ) ,  
the high mobility group protein HMG I(Y) 
( 7 ) ,  and the transcription factors nuclear 
factor-KB (NF-KB) (7)  and c-Jun (8). 
These protein-protein interactions lead to 
increased transcriptional activity. The func- 
tion of ATFZ may therefore be determined 
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by its interaction with these proteins. ATFZ 
may also be the direct target of a signal 
transduction pathway. To test this hypoth- 
esis, we investigated the potential regula- 
tion of ATF2 by phosphorylation. 

We used an in-gel protein kinase assay to 
detect enzymes that phosphorylated ATF2 
(9). This analysis demonstrated that ATFZ 
was a substrate for the 46-kD JNKl (10) 
and 55-kD JNK2 (I 1 ) protein kinases (Fig. 
1). These protein kinases are activated in 
cells exposed to pro-inflammatory cytokines 
or ultraviolet (UV) light (1 0-1 3) by phos- 
phorylation on Thr and Tyr (10). Deletion 
analysis indicated that the NH,-terminal 
domain of ATFZ was phosphorylated by 
JNKl (Fig. 2). Progressive NHz-terminal 
deletions of residues 1 to 20 or 1 to 40 
caused no change in the extent of ATFZ 
phosphorylation. However, deletion of res- 
idues 1 to 60 blocked phosphorylation of 
the NH,-terminal domain of ATFZ (Fig. 
2B). These data indicate that JNKl phos- 
phorylates ATF2 at a site (or sites) located 
between residues 40 to 109 (Fig. 2B). Like 
the activation domain of c-Jun (10-12, 
14), this region of ATFZ may also contain a 
binding site for JNK protein kinases. To test 
this hypothesis, we used a solid-phase ki- 
nase assay. JNKl was incubated with immo- 
bilized ATF2, unbound JNKl was removed 
by extensive washing, and bound JNKl was 
detected by incubation with [y3'P]aden- 
osine triphosphate (ATP). This assay dem- 
onstrated that JNKl bound to and phos- 
phorylated ATFZ (Fig. 2C). These observa- 
tions were confirmed by measurement of 
the direct binding interaction of JNKl with 
wild-type and mutated ATF2 molecules 
(Fig. 2D). Together, these data establish 
that residues 20 to 60 of ATFZ are required 
for binding and phosphorylation by JNKl 
(Fig. 2). A similar binding interaction be- 
tween ATFZ and the 55-kD JNK2 protein 
kinase was also observed (15). 

Phosphorylation by JNK reduced the 
electrophoretic mobility of ATF2 (Fig. 3A). 
Phosphoamino acid analysis of the full- 
length ATFZ molecule (residues 1 to 505) 
demonstrated that JNK phosphorylated 
both Thr and Ser residues. The major sites 

of Thr and Ser phosphorylation were locat- 
ed in the NHz- and COOH-terminal do- 
mains, respectively (Fig. 3B). The NHz- 
terminal sites of phosphorylation were iden- 
tified as Thr69 and Thr7' by phosphopep- 
tide mapping and mutational analysis (15). 
The sites of Ser phosphorylation in the 
COOH-terminal domain remain to be 
identified. Site-directed mutagenesis dem- 
onstrated that the replacement of Thr69 and 
Thr7' with Ala eliminated the phosphoryl- . 
ation of ATFZ on Thr (Fig. 3B). These sites 
of Thr phosphorylation are located in a 
region of ATF2 that is distinct from the 
subdomain required for JNK binding (resi- 
dues 20 to 60) (Fig. 2). 

To investigate whether JNK phospho- 
rylates ATF2 in vivo, we examined the 
effect of JNK activation on the properties of 
ATF2. JNK is activated by treatment of 
cells with pro-inflammatory cytokines or 
UV radiation (10-13). In initial studies, we 
examined the effect of UV light on the 
electrophoretic mobility of ATF2 during 
SDS-polyacrylamide gel electrophoresis 
(PAGE) by protein immunoblot analysis. 
UV radiation caused JNK activation and a 
reduction in the electrophoretic mobility of 
ATFZ (Fig. 4). This mobility shift is similar 
to that caused by JNK phosphorylation of 
ATFZ in vitro (Fig. 3). A shift in the elec- 
trophoretic mobility of ATF2 was also ob- 
served when CHO cells were incubated 
with the pro-inflammatory cytokine inter- 
leukin-1 (IL-1). Smaller effects on both 
JNK activity and ATF2 electrophoretic mo- 
bility were observed after treatment of cells 
with serum (Fig. 4). 

The observation that JNK activation is 
associated with an electrophoretic mobility 
shift of ATF2 suggests that ATFZ may be a 
substrate for JNK in vivo. We therefore 
investigated the effect of UV radiation on 
the properties of wild-type (Thfl9J1) and 
phosphorylationdefective (Ala69.71) ATF2 
molecules. Exposure to UV caused a de- 
crease in the electrophoretic mobility of 
both endogenous and overexpressed wild- 
type ATFZ (Fig. 5A). This change in elec- 
trophoretic mobility was associated with in- 
creased ATFZ phosphorylation (Fig. 5B). 

Fig. 1. ATF2 is a substrate for JNK ,, protein kinases. COS-1 cells were J a ' &  B 6' 
transfected without and with epitope- -- 8 d 

+ + U V  
- 

tagged JNKl (26). Some cultures - + uv 
were exposed to W radiation (40 97+ 
J/m2) and incubated for 1 hour at 
37OC. The protein kinas8 activity in 6- 

the cell lysates (A) and JNKl immu- - cJNK2 

noprecipitates (B) was examined with 45+ -+JNK~ 45+ - 4 ~ ~ 1  - 
an in-gel assay, and the substrate 
(GST-ATF2, residues 1 to 505) poly- 29+ 294 
merized in the gel (9). The cell lysates 
demonstrate the presence of 46-kD 
and 55-kD protein kinases that phosphorylate ATF2 in extracts prepared from W-imdiated cells. The 
46-kD and 55-kD protein kinases were identified as JNKl (10) and JNK2 (1 I), respectively. 

Fig. 2. Binding of JNK to ATF2 and phospho- 
rylation of the NH2-terminal activation domain. 
(A) Purified GST-ATF2 fusion proteins (25) were 
resolved by SDS-PAGE and stained with Coo- 
massie blue. Each lane on the gel is labeled with 
the residues of ATF2 that are fused to GST. 
Molecular size standards (kilodaltons) are indi- 
cated on the right. (B) The phosphorylation of 
GST-ATF2 fusion proteins by JNKl isolated 
from UV-irradiated cells was examined in an im- 
munocomplex kinase assay (9). (C) The phos- 
phorylation of immobilized GST-ATF2 fusion 
proteins was examined in a solid-phase kinase 
assay 19). JNKl from W-irradiated cells was 
'incubated with GST-ATF2 fusion proteins bound 
to glutathione-agarose. The agarose beads 
were washed extensively to remove the un- 
bound JNK1. Phosphorylation of the GST-ATF2 
fusion proteins by the bound JNKl protein ki- 
nase was examined by addition of [Y-~~P]ATP. 
(D) The binding of JNKl to ATF2 was examined 
by incubation of GST-fusion proteins bound to 
glutathione-agarose beads with cell lysate (27). 
The agarose beads were incubated for 1 hour 
at 4°C and then washed extensively. JNKl 
present in the cell lysate and bound to the beads 
was detected by protein immunoblot analysis 
(arrow). 
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Both the electrophoretic mobility shift and 
the increased phosphorylation were blocked 
by the replacement of ThP9 and Thr71 with 
Ala (Fig. 5B). This mutation also blocked 
the phosphorylation of ATFZ on Thr resi- 
dues in vivo (Fig. 5C). Furthermore, muta- 
tion of ATFZ at Thr69 and Thr71 resulted in 
the loss of two tryptic phosphopeptides in 
maps of ATFZ isolated from UV-irradiated 
cells (Fig. 5D). These phosphopeptides cor- 
respond to mono- and bis-phosphorylated 
peptides containing ThP9 and Thr71. Both 
of these phosphopeptides were found in 
maps of ATFZ phosphorylated by JNKl in 
vitro (Fig. 5D). However, the amount of 
bis-phosphorylation on ThF9 and Thr7' 
was greater in vivo than in vitro. Taken 
together, these data indicate that ATFZ is a 
substrate for JNK protein kinases in vivo. 

The identification of ATFZ as a JNK 
substrate in vivo suggests that ATFZ activ- 
ity may be regulated by the JNK protein 
kinase signal transduction pathway. The 
DNA binding activity of bacterially ex- 
pressed ATFZ is increased by phosphoryla- 
tion in vitro (1 6). We therefore investigat- 

Coomassle Autoradlograph 

Fig. 3. Phosphorylation of the NH2-terminal acti- 
vation domain of ATF2 on T h P  and Thr71 by 
JNK1. (A) Mock-transfected and JNKl-trans- 
fected COS cells (26) were treated without and 
with UV (40 J/m2) radiation. The epitope-tagged 
JNKl was isolated by immunoprecipitation with 
the M2 monoclonal antibody. The phosphoryla- 
tion of GST-ATF2 (residues 1 to 109) was exam- 
ined in an immunocomplex kinase assay (9). The 
GST-ATF2 was resolved from other proteins by 
SDS-PAGE and stained with Coomassie blue. 
The phosphorylation of GST-ATF2 was detected 
by autoradiography. (6) GST fusion proteins con- 
taining full-length ATF2 (residues 1 to 505), an 
NH2-terminal fragment (residues 1 to log), and a 
COOH-terminal fragment (residues 95 to 505) 
were phosphotylated with JNKl and analyzed by 
phosphoamino acid analysis (9). S, phospho- 
serine; T, phosphothreonine; Y, phosphotyrosine. 

ed the effect of JNK activation on the DNA 
binding properties of ATFZ (1 7). Irradia- 
tion of cells with UV light caused no 
change in the DNA binding activity of 
ATFZ measured in nuclear extracts (15). 
Thus, JNK activation does not appear to 
regulate ATFZ DNA binding activity in 
vivo. 

The location of the phosphorylation 
sites and Thr71 within the NH2-ter- 
minal activation domain of ATFZ suggests 
that these sites may regulate transcriptional 
activity. We therefore examined the effect 
of point mutations at ThP9 and Thr71 on 

Fig. 4. Reduced electro- A 
phoretic mobility of JNK- & +& 
activated ATF2. (A) CHO c8 3 \L' 
cells were treated with 
UV-C (40 J/m2), IL-la 
(10 ng/ml), or serum 
 thecells cells were in- 
cubated for 30 min at C W ~  

Fig. 5. Increased ATF2 phos- 
phorylation after activation of 
J N K  in vivo. (A) COS-I cells 
were transfected without (con- 
trol) and with an ATF2 expres- 
sion vector (26). The effect of 
exposure of the cells to UV-C 
(40 J/m" was examined. After 
irradiation, the cells were incu- 
bated for defined times at 37°C 
and then collected. The electro- 
phoretic mobility of ATF2 during 
SDS-PAGE was examined by 
protein immunoblot analysis 
(28). The two electrophoretic 
mobility forms of ATF2 are indi- 
cated with arrows. (B) The 
phosphorylation state of wild- 
type (ThP9,") ATF2 and mutat- 
ed (Alafig.'') ATF2 was exam- 

37°C before harvesting. 
The electrophoretic mo- 
bility of ATF2 after SDS- 
PAGE was examined 
by protein immunoblot 
analysis (28). (B) JNK 
protein kinase activity 
present in the cell ex- 
tracts was measured by 
immunocomplex kinase 
assay (9). JNK was im- I 

munoprecipitated with a 
polyclonal antibody, and 
the phosphorylation of 
the substrate GST-ATF2 (residues 1 to 109) was 
examined after addition of [-y-32P]ATP. The phos- 
phorylated GST-ATF2 was detected after SDS- 
PAGE by autoradiography. 

ATF2-stimulated expression of a luciferase 
reporter gene. Similar amounts of the wild- 
type and mutated ATFZ molecules were 
detected by immunoblot analysis (15). Re- 
placement of Thr69 or Thr7' with Ala 
caused a decrease in luciferase expression 
mediated by ATFZ (Fig. 6A). Replacement 
of ThP9 with Glu also decreased reporter 
gene expression, which indicates that the 
acidic Glu residue does not functionally 
substitute for phosphorylated Thr. Similar 
transcriptional activities were detected for 
mutant ATFZ proteins containing single 
mutations at ThF9 and Thr71 or mutations 
at both residues (Fig. 6A). This observation 
suggests that both phosphorylation sites are 
required for the transcriptional activity of 
ATF2. Consistent with this conclusion is 
the finding that ATFZ is phosphorylated on 
both Thr69 and Thr71 in vivo (Fig. 5). The 
effect of phosphorylation to increase tran- 
scriptional activity may be mediated by 
phosphorylation-dependent binding of 
ATFZ to a co-activator such as the CREB 
binding protein CBP (1 8). 

The effect of point mutations at 
and Thr7' on the transcriptional activity of 
ATFZ (Fig. 6A) indicates that the phos- 
phorylation of ATFZ by JNK may be phys- 
iologically significant. To test this hypoth- 
esis, we investigated the effect of a domi- 
nant-interfering JNKl mutant on ATFZ 
function. The binding of JNKl to the NH2- 
terminal activation domain of ATFZ (Fig. 
2) suggests that a catalytically inactive 
JNKl protein kinase may function as a 
dominant inhibitor. JNKl protein kinase 
activation requires phosphorylation on 
Thr183 and Tyr'85 (10). We therefore con- 

- -- 
0 30 0 15 30 45 Time 

c $'. ." 
.Cc t;.* 

s+ 9 -* 
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ined in cells labeled with 32P, treated without and with UV-C in vitro uhP9971) Mix ( ~ h f i ~ . ~ ~ )  
(40 J/m2), and then incubated at 37'C for 30 min (26). The 
ATF2 proteins were isolated by immunoprecipitation and analyzed IJY 03s-PAGE and autoradiography 
(9). (C) The phosphorylated ATF2 proteins isolated from UV-irradiated cells were examined by phos- 
phoamino acid analysis (9). (D) Tryptic phosphopeptide mapping was used to compare ATF2 phosphor- 
ylated in vitro by JNKl with ATF2 phosphorylated in vivo. A map was also prepared with a sample 
composed of equal amounts of in vivo- and in vitro-phosphorylated ATF2 (Mix). The origin of the maps 
is indicated with a cross. Two phosphopeptides are indicated with arrows. 
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structed a catalytically inactive JNK1 mu­

tant by replacing the sites of activating Thr 

and Tyr phosphorylation with Ala and Phe, 

respectively. Expression of wild-type JNK1 

caused a small increase in serum-stimulated 

ATF2 transcriptional activity (Fig. 6B). In 

contrast, dominant-negative JNK1 inhibit­

ed both control and serum-stimulated 

ATF2 activity. This inhibitory effect may 

result from the nonproductive binding of 

the JNK1 mutant to the ATF2 activation 

domain. These data provide evidence that 

JNK1 is a physiologically relevant protein 

kinase that interacts with ATF2 in vivo. 

The tumor suppressor gene product Rb 

binds to ATF2 and increases ATF2-stimu-

lated gene expression (6). Similarly, the 

adenovirus oncoprotein El A associates 

with the DNA binding domain of ATF2 (2) 

and increases ATF2-stimulated gene ex­

pression by a mechanism that requires the 

NH2-terminal activation domain of ATF2 

(2, 3, 19). Rb and El A increased ATF2-

stimulated gene expression in experiments 

with both wild-type (Thr69'71) and mutated 

(Ala69'71) ATF2 molecules (Fig. 6, C and 

D). However, the phosphorylation-defec-

tive ATF2 caused a lower level of reporter 

gene expression than did wild-type ATF2 

(Fig. 6, C and D). Together, these data 

indicate a requirement for ATF2 phospho­

rylation (on Thr69 and Thr71) together with 

Rb or El A for maximal transcriptional ac­

tivity. Thus, Rb and El A act in concert 

with ATF2 phosphorylation to control 

transcriptional activity. 

Ultraviolet irradiation and pro-inflam­

matory cytokines (tumor necrosis factor 

and IL-1) are potent activators of the JNK 

protein kinase (10-13). We have demon­

strated that the transcription factor ATF2 

is a target of the JNK signal transduction 

pathway. JNK phosphorylates ATF2 (Fig. 

1) and related members of the ATF2 group 

of transcription factors [ATFa (15) and 

CRE-BPa]. ATF2 binds to CRE-like ele­

ments [T(G/T)ACGTCA] in the promot­

ers of many genes. Indeed, a specific role 

for ATF2 in the expression of human T 

cell leukemia virus-1 (5), transforming 

growth factor-P2 (6), interferon P (7), 

and E-selectin (20) has been established. 

In addition, ATF2 is implicated in the 

function of a T cell-specific enhancer 

(21). Thus, the activation of ATF2 can 

account for the induction of gene expres­

sion by means of CRE-like elements by the 

JNK signal transduction pathway. ATF2 

also binds to CRE-like elements as a het-

erodimer with partners such as c-Jun (8). 

Both ATF2 and c-Jun are phosphorylated 

by JNK (22). The ATF2-c-Jun het-

erodimer may therefore be a physiological­

ly relevant target of the JNK signal trans­

duction pathway. Indeed, a role for acti­

vated ATF2-c-Jun heterodimers is impli­

cated in oncogenic transformation (23). 
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