
Measurement of Lactose Repressor-Med iated time (Fig. 'A), with measurements distrib- 
uted in a single peak at -73 nm (Fig. 2G). 

LOOP Formation and Breakdown in When repressor is added to a prepara- 

Single DNA Molecules tion containing beads tethered by the two- 
operator DNA, repressor-mediated loops 

Laura Finzi* and Jeff Gelles? can form in the DNA molecules (Fig. 1Cj.  
We  reasoned that looping would decrease 
the effective length of the D N A  tether, 

In gene regulatory systems in which proteins bind to multiple sites on a DNA molecule, thereby reducing the bead Brownian mo- 
the characterization of chemical mechanisms and single-step reaction rates is difficult ,tion. Because the equilibrium of Fig. 1C  is 
because many chemical species may exist simultaneously in a molecular ensemble. This dynamic, individual molecules are expect- 
problem was circumvented by detecting DNA looping by the lactose repressor protein of ed to stochastically fluctuate between a 
Escherichia coli in single DNA molecules. The looping was detected by monitoring the short tether-low Brownian motion state 
nanometer-scale Brownian motion of microscopic particles linked to the ends of individual (looped) and a long tether-high motion 
DNA molecules. This allowed the determination of the rates of formation and breakdown state (unlooped). Experimental data con- 
of a protein-mediated DNA loop in vitro. The measurements reveal that mechanical strain firm this expectation. Fluctuations are ob- 
stored in the loop does not substantially accelerate loop breakdown, and the measure- served in measurements of the Brownian 
ments also show that subunit dissociation of tetrameric repressor is not the predominant motion of tethered beads in the presence 
loop breakdown pathway. of 1.0 X M repressor (Fig. 2, B to D). 

Frequency distributions of such measure- 
ments (for example, Fig. 2H) usually show 
in addition to the -73-nm peak a new 

DNA looping, in which a protein or pro- sites for the lactose repressor) separated by peak at -48 nm, which is consistent with 
tein complex binds simultaneously to two 305 base pairs (bp) (Fig. 1A).  This operator the presence of a discrete chemical state 
separated sites on  a DNA molecule, is a arrangement produces stable repressor-medi- with a more restrictive DNA tether. We  
fundamental mechanism for the regulation ated loops in vitro (3). We  attached the hypothesize that the -73- and -48-nm 
of gene expression (1 ). For example, loop- digoxigenin-labeled DNA ends to a glass Brownian motion, states correspond, re- 
ing by the lactose repressor protein mod- cover slip coated with an antibody to digoxi- spectively, to unlooped and looped forms 
ulates transcription of the Escherichia coli genin and subsequently labeled the opposite of the DNA. This hypothesis is consistent 
lactose operon (2-4). To  understand the ends of the immobilized DNA molecules with the following observations: ( i )  In 
molecular mechanisms of transcriptional with avidin-conjugated polystyrene beads control experiments in which repressor- 
regulation, it is necessary to examine the (0.226 p m  in diameter) (9). Examination of mediated loop formation is prevented ei- 
thermodynamics and kinetics of looping. the cover slips by differential interference ther by the addition of I mM isopropyl-P- 
Although the stabilities of loops formed by contrast light microscopy revealed that most D-thiogalactopyranoside (IPTG) (Fig. 2E) 
lactose repressor and other proteins have surface-attached beads displayed the restrict- or by the use of a DNA containing a single 
been characterized (3, 5, 6) ,  the rates at ed Brownian motion characteristic of beads operator (Figs. 1B and 2F), only one peak 
which protein-mediated loops form and linked to the cover slip by a flexible DNA is observed in the data distributions (Fig. 
break down in vitro have not been mea- tether (8). The surface density of DNA on 21). (ii) The  magnitude of the Brownian 
sured. Such measurements are difficult the cover slip was sufficiently low to ensure motion of beads tethered by the one-op- 
with conventional biochemical tech- that 2-97% of the beads were attached to erator DNA (-50 nm, Fig. 2, F and I) is 
niques, which are restricted to observation a single DNA molecule (10). Using previ- similar to that in the -48-nm putative 
of the population-averaged properties of ously developed image processing tech- looped state. This is expected because the 
large numbers of molecules. Here we de- niques (I  I ) ,  we measured the Brownian mo- length of the one-operator DNA is com- 
scribe direct, time-resolved detection of tion of the DNA-tethered beads (12). The parable with the effective length of the 
loop formation and breakdown in single motion of beads tethered by the two-opera- looped DNA (Fig. I ) .  (iii) Samples with 
DNA molecules. Single-molecule kinetic tor DNA (Fig. 1A) is essentially constant in the one-operator DNA in the absence of 
analysis (7) of these events helps discrim- 
inate between proposed mechanisms of 
loop breakdown. Fig. 1. (A) Labeled, two- A B 

To  detect looping in individual DNA Operator 
0 0 Q molecules, we used a tethered p;rticle mo- DNA used 7 

ecule looping studies. (B) : - A  ,~,. , .**> -:, ,be. , ,  : <" : ,s, .,. . ~~ ,,, , ' , ,  .. ,,. , . . , 

tion method, which consists of monitoring One-operator DNA used :-:u:-: 
by light microscope digital image process- control experiments, 0, 

:-:-: 
604 bp 305 bp 242 bp 604 bp 242 bp 

ing techniques the Brownian motion of a wild.type lac 
microscopic particle tethered by a single Bio, biotln-labeled 5' nu. 
DNA molecule to a glass surface (8) .  We  cleotide; Dig, digoxigen~n- 
prepared a linear double-stranded DNA labeled 3' nucleotide (20). 
labeled at one end with digoxigenin and at (C) Schematic of the light 
the other end with biotin and containing microscope specimens 
two primary lac operators (DNA binding to detect lactose re- 

pressor-mediated loop- 
Graduate Department of Biochemistry and the Center for ing in  single DNA m o l e -  
Complex Systems, Brande~s University, Waltham, MA c u l e s .  Labeled DNA 
02254, USA. (black line) with two lac operators (white rectangles) tethers an avidin-conjugated 0.226-pm diameter 
*Present address: Dipartimento di Biologla, Universita polystyrene bead (circle) to a glass cover slip (shaded rectangle) coated with an ant~body to digoxigenin. 
Statae di Miano, Via Ceorla 26, Milano, 22100 MI, Italy, Looping of the DNA by a tetrameric repressor molecule (shaded square) decreases the effective length of 
tTo whom correspondence should be addressed. the tether and consequently reduces bead Brownlan motion. 
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Fig. 2. Effect of repressor on the Brownian motion of DNA-tethered beads. (A to F) Each plot shows how 
the spatial range of motion of a single bead changes with time. (A) Bead tethered by two-operator (2-op.) 
DNA in the absence of repressor. (B to D) Three examples of beads tethered by two-operator DNA in the 
presence of 1.0 X M repressor. The second trace in (B) is a continuation of the first. (E) Bead 
tethered by two-operator DNA in the presence of 1.0 x M repressor and 1.0 mM IPTG (an inhibitor 
of repressor-operator specific binding). (F) Bead tethered by one-operator (I  -op.) DNA in the presence of 
1.0 x M repressor. (G to I) Frequency distributions of Brownian motion measurements from (A), (B), 
and (F), respectively. Spikes [for example, in (E)] in which the Brownian motion briefly decreases to near 
zero are caused by transient sticking of the bead to the cover slip surface. 

repressor yielded data records and frequen- 
cy distributions (13) indistinguishable 
from those obtained from sam~le s  with the 
one-operator DNA and a saturating con- 
centration (1.0 X l op9  M)  (3) of repressor 
(Fig. 2,  F and I ) .  This demonstrates that 
binding of repressor to a single operator 
site does not cause (for example, by bend- 
ing the DNA) a detectable change in bead 
Brownian motion. (iv) A n  algorithm that 
counts transitions between the -73- and 

-48-nm states (14) detects a high fre- 
quency of transitions in samples with re- 
pressor and two-operator DNA, and a zero 
or very low frequency in control samples 
(Table 1) .  

W e  characterized the kinetics of repres- 
sor-mediated DNA loop formation and 
breakdown by lifetime analysis of the sin- 
gle-molecule equilibrium data at 1.0 X 
lop9 M repressor (15). The  frequency dis- 
tribution of unlooped-state lifetimes (Fig. 

Table 1. Transitions between h~gh (-73-nm) and low (-48-nm) Brownian motion states of DNA- 
tethered beads. 

Mean 
Data Total Total Mean transition 

Additions processed trans- frequency 2 records* data (min) itionst (mi n) SD$ (min-I) 

Two-operator DNA 
None 10 16 165 0 0 
1.0 X 1 O-Q M repressor 3 1 26 81 7 247 0.30 2 0.02 
1.0 X 1 OWq0 M repressor 9 25 229 56 0.24 i 0.03 
1.0 x 1 0-9 M repressor 2 2 1 42 2 0.05 i 0.03 

and 1 mM IPTG 
One-operator DNA 

1.0 X 1 O-Q M repressor 12 22 269 8 0.03 ? 0.01 

*Each data record is the time course of Brownian motion for an ~ndividual DNA-tethered bead, as ~n Fig. 2, A to 
F, tNumber of crossings of a threshold set between the high and low Brownian motion states (74). The transitlon- 
counting procedure is expected to have a iow but detectable faise-positive rate due to nolse in the data 
records, $Population standard deviations were calculated on the assumption that the transitions are Poisson 
distributed. 

200 400 600 
Lifetime (s) 

Fig. 3. Frequency distributions (noncumulative) 
of high Brownian motion (unlooped) and low 
Brownian motion (looped) state lifetimes for all 
data records with two-operator DNA in the pres- 
ence of 1.0 x 1 0-9 M repressor (see Table 1). 
The lengths of data records used in compilation 
of these distributions ranged between 4 and 75 
min with a mean of 26 min. (A) Unlooped-state 
lifetimes (a), computer fitto a scaled biexponen- 
t~al probability distribution function (15) with I~fe- 
times (weights) T, = 77 +- 6 s [a = 0.3 +- 0.21, T, 
= 5.2 ? 1.6 s [I - a = 0.71 (- - - -). (8) Looped- 
state lifetimes (a), computer fit to a scaled expo- 
nential probability distribution function (15) with 
lifetime T = 58 ? 2 s (-). 

3A)  is fit better by the sum of two expo- 
nential terms than by a single exponential. 
This result is consistent with previous 
work that im~ l i e s  that the un loo~ed  state 
consists of multiple chemical species in 
equilibrium (5 ,  16). , In contrast, the 
looped-state lifetimes (Fig. 3B) are well fit 
by a single exponential, consistent with 
the presence of only one looped species. 
The  quality of the fit is evidenced by the 
close agreement of the decay constant [T 
= 58 i. 2 (SE) s] with the mean of the 
measured looped-state lifetimes corrected 
(17) so as to include those lifetimes too 
short to be detected by our instrumenta- 
tion = 69 i 6 s). The  latter is 
essentially unchanged (p,,,,, = 73 2 11 s) 
in experiments in which repressor concen- 
tration is reduced to 1.0 X lop1' M, sug- 
gesting that reactions involving the bind- 
ing of free repressor molecules from solu- 
tion do not significantly affect the rate a t  
which the low (-48 nm) Brownian mo- 
tion state decays. This argues against mod- 
els in which the -48-nm state is a com- 
posite of the looped and one or more 
distinct unlooped chemical species in rap- 
id equilibrium, instead 6f the one looped 
species alone. 

The  apparent first-order unlooping rate 
constant (kapp = 0.017 s-l, the reciprocal 

SCIENCE VOL. 267 20 JANUARY 1995 



of T )  places significant constraints on pos- 
sible mechanisms of loop breakdown. 
Hsieh e t  al. (3) determined the rate con- 
stant of repressor dissociation from one- 
operator DNA to be -0.006 s-' at ion 
and dimethylsulfoxide concentrations 
identical to those used here. This result 
accounts nearly completely for our ob- 
served unlooping rate because loop break- 
down can occur bv either of two eauiva- 
lent protein-DNA dissociation reactions. 
This implies that the dissociation of re- 
pressor tetramers into dimers, a possible 
alternative pathway (5), cannot play a 
dominant kinetic role in loop breakdown 
under our experimental conditions. Simi- 
larly, the observations rule out a large 
acceleration of the repressor-DNA disso- 
ciation rate constant induced by the me- 
chanical strain stored in the 305-bp DNA 
10011 studied here ( 1  8). ~, 

We report direct measurements of the 
formation and breakdown kinetics of a 
repressor-mediated DNA loop. The single- 
molecule tethered   article motion method 
allows direct physical detection of loop 
formation, can be amlied even when the 

L L 

system is at chemical equilibrium, and 
can distinguish the effects of biochem- 
ical heterogeneity from those of multipha- 
sic kinetic processes. This method may 
prove useful in studying other protein- 
mediated DNA looping involved in tran- 
scriptional regulation and DNA recombi- 
nation processes. 
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