
mECHN1CAL COMMENTS 

Assessing Molecular Phylogenies 

D a v i d  Hillis et al. attempt ( I )  to assess 
the performance of methods of phyloge-
netic analysis by numerical simulation 
studies. They compare five methods using 
a simple criterion-the probability of ob-
taining the correct evolutionary tree with 
a given amount of simulated data. In a 
related paper (2)  Hillis and colleagues in-
creased to ten the number of methods 
compared. 

lihood. Simulation is valuable in  assessing 
the robustness of a model, but not the 
suitability of a n  estimation procedure; 
modern statistical theory has solved that 
problem already. 

A. W. F. Edwards 
Gonville and Caius College, 

Cambridge, CB2 1TA, United Kingdom 
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ods. For more than 70 years the backbone 
of the appropriate after-trial statistical es-
timation theory has been known to be 
Fisher's method of maximum likelihood 
(4). 

T h e  sound logical basis of maximum 
likelihood (5) sets it apart from the other 
algorithmic methods tested. If the proba-
bility model is specified, maximum likeli-
hood would be the preferred method in 
principle even if it did not lead to the 
correct answer with the highest probabil-
ity (though there are theoretical reasons 
for not being surprised that it scores well 
on  this criterion). 

It was for these reasons that Cavalli-
Sforza and I strove from the beginning to 
improve o n  our least-squares distance-ma-
trix approach (6)  by applying maximum-
likelihood to a well-defined evolutionary 
model for continuous characters (7), and 
why I suggested using maximum-likeli-
hood for the discrete-character case as 
well (8).Moreover, when we discussed the 
justification of our "method of minimum 
evolution" or "parsimony" (9), we did so 
not on  the grounds which have since been 
advanced ( l o ) ,  but because we correctly 
expected it to be a good approximation to 
the maximum-likelihood solution (7). 

The  message from statistical theory is 
simple: You cannot simulate evolutionary 
trees without a probability model, and if 
you possess a probability model you should 
be performing efficient after-trial evalua-
tion using the method of maximum like-
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Examinine the  accuracies of molecular
L z  

phylogenies obtained by several tree-
building methods, Hillis et al. (1) conclude 
that,  when realistic conditions are consid-
ered, the maximum parsimony method is 
generally superior to other methods such 
as the neighbor joining (NJ)  method (2)  
and UPGMA (3) in  the recovery of a true 
phylogeny. This conclusion was based pri-
marilv on  the results of comuuter simula-
tions and a n  analysis of D N A  sequences 
obtained from a n  exuerimental evolution 
of phage populations. 

In this comment we comDare ~arsimonv* . 

and NJ only as they relate to the simula-
tions in the article by Hillis et al. 

Figure 1 of the article by Hillis et al. 
shows the areas of different probability at  
which parsimony and NJ obtain the cor-
rect tree (topology) when a tree is con-
structed for four seauences of 200 nucle-
otides. T h e  abscissa of the two-dimension-
al diagrams represents the expected 
lengths of branches a, b, and c of the tree 
(Fig. I ) ,  whereas the ordinate stands for 
the expected lengths of branches d and e. 
Branch lengths are measured in terms of 
the proporzon of nucleotides that differ 
between two sequences compared (p) rath-
er than the number of substitutions per 

site (d). Nucleotide substitution was sim-
ulated by using Kimura's two-parameter 
model (4)  with a transition to  transversion 
parameter ratio ( a / @ )equal to  10. Hillis et 
al. (1)  show that the area in  which the 
probability of obtaining the correct tree 
(PC)exceeds 0.95 is greater for NJ than for 
parsimony when p is used, but that the 
area for parsimony weighted with a n  a/@ 

Branch lengths 
(a, b, and c) 

-----.NJP 

(BMR) I 

(BMR) / 
Parsimony Neighbor joining 

Fig. 1. Areas in which the probability of obtaining 
the correct topology (PC)is 20.95. The curves for 
parsimony were obtained by equation 18 in (14), 
whereas those for NJ were computed by equation 
22 in (15). MP, unweighted parsimony; MPW, 
weighted parsimony with the d B  ratio; NJP, NJ 
withp distance;and NJR, NJ with modified Kimura 
distance. The abscissa represents the branch 
length a ,  b, or c, and the ordinatethe branch length 
d or e. The branch lengths are measured in p dis-
tance (no correction for multiple hits) rather than d 
distance that corrects for multiple hits. The area 
outside the region demarcated by a dotted line 
(BMR) is biologically irrelevant, because the 
area represents cases of highly diverged DNA se-
quences which are virtually never used in phyloge-
netic inference (9, 10).BMR, biologically meaning-
ful region. (A) Case where the number of nucleo-
tides used (n)= 200 and d p  = 10.The area for PC 
2 0.95 is much wider for NJR than for NJ with 
original Kimura distance (1). In the present case 
original Kimura distance gives poor results be-
cause when p is large transitional nucleotide differ-
ences have little phylogenetic information. NJ with 
transversionpdistanceor weightedp distancewith 
an d p  ratio = 10also gives as good resultsas NJR 
(data not shown).(B) Case where n = 1000 and 
d p  = 2 In this case MP and NJP give essentially 
the same results, whereas NJR gives a wider area 
for PC2 0.95than MPWwhen BMR is considered. 

SCIENCE VOL. 267 13 JANUARY 1995 



20 (Unreliable region) I 
I I " " 1  I " , ' I  I 

-

I 
I 2 4 
I 
I p= 0.25 
I 

o d =  0.30 
20 - (Unreliable region) I 

I 1 ' 1 1 ' 1 I " ' I 1 I 

Number of nucleotides 

Fig. 2. Relationships between the percentage (100 X PC)of correct topologies obtained and n in 
computersimulations.The number of replications used is 1000.Phylogenetictrees are rarely constructed 
for n < 100, as the trees obtained for this case are unreliable. NJW, NJ with weighted p distance with 
the a/@ratio. (A) Case considered in (1).  a/@= 10. The results for NJR and NJW are essentially the 
same as those for MPW. (6)A case which is biologically more meaningful than case (A).a/@= 2. NJR is 
better than MP, MPW, and NJP for all values of a = c and d = e whenever a # d for the fixed value of the 
d distance for a + d equal to 0.3. NJ with original Kimura distance gives essentially the same results as 
those for NJR (data not shown). 

ratio of 10 is greater than that for NJ with 
Kimura distance. 

The  latter comparison is not appropri-
ate because Kimura distance often be-
comes undefined when the number of 
nucleotides used is small and p is large, as 
in this case. Weighted p distance (5)  or 
modified Kimura distance (6)  is almost 
always definable, and NJ with these dis-
tances is known to give higher PC values 
(2 ,  7, 8) when p is high. Our analytical 
study has shown that the area of PC> 0.95 
for NJ with modified Kimura distance is as 
large as that for weighted parsimony (Fig. 
1A). However, a large part of this power 
analysis is biologically irrelevant, as DNA 
sequences with divergences of d r 1.5 ( p  
r 0.57) are rarely used for phylogenetic 
inference (9) .  This is because, in this case. 

500. For these situations. N l  with modi-
fied Kimura distance usua'lly performs bet-
ter than parsimony (Fig. 1B). 

After examining the relationships be-
tween PC and n for different tree-building 
methods. Hillis et al. also conclude that 
parsimony performs better than NJ. In 
this case too, however. Nl  with modified , , 
Kimura distance is as good as weighted 
parsimony, and NJ with p distance is 
better than unweighted parsimony (Fig. 
2A).  Again, the model tree used for this. - . 
case is unrealistic, because the extent of 
sequence divergence (d = 2.10 to 3.15) is 
too high to generate a reliable tree for 
actual data (10). If we consider a more 
realistic model tree (Fig. ZB), NJ with 
modified Kimura distance is much better 
than weighted warsimonv. 

u 

sequence alignment is difficult, and any The above simulations were done for the 
tree-building method becomes unreliable case of four sequences with the simple 
(10). The  cw/P ratio in most nuclear genes Kimura model of nucleotide substitution, 
is also about two (1 1 ), and the number of and the extrapolation of these results to real 
nucleotides used ( n )  is usually more than cases of phylogenetic inference is not 

straightforward (12). Some other simula-
tions with more realistic models or larger 
numbers of sequences (7), or both, have 
shown that parsimony is often less efficient 
than NJ or the methods of minimum evo-
lution (13) and maximum likelihood (6), 
though it is a good method under certain 
circumstances. However, further study, par-
ticularly analytical study, seems to be nec-
essary to clarify the conditions for which 
each tree-building method performs well. 

M. Nei 
N. Takezaki 
T. Sitnikwa 

lnstitute of Molecular Evolutionary Genetics 
and Department of Biology, 

Pennsylvania State University, 
University Park, P A  16802, U S A  
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Response: In our comparison of methods 
for assessing phylogenetic accuracy (1), we 
contrasted simulations based o n  simple 
evolutionary models with two other ap-
proaches: simulations based o n  empirical 
observations (in our example, studies of 
HIV evolution) and experimental phylog-
enies generated in the laboratory. In our 
example of a simple evolutionary model, 
we compared two types of data transfor-
mations: differential weighting of substitu-
tions based o n  their relative frequency of 
occurrence in  the model (shown for uar-
simony, where the approach was first de-
veloped) and corrections for superimposed 
changes (shown for the neighbor-joining 
and UPGMA methods, where such trans-
formations are commonlv used). W e  com-
pared these methods to show that weight-
ing, but not  corrections for superimposed 
changes alone, are required to  achieve 
good performance at  high rates of evolu-
tion, in contrast to statements in  the lit-
erature ( 2 ) .  W e  noted that either kind of. , 

transformation is possible for any of these 
methods: "Character-based methods such 
as parsimony can also be made consistent 
by using a Hadamard transformation to 
correct the data" ( 1 ,  p. 671) and "weight-
ing methods could also be incorporated 
into methods of calculating pairwise dis-
tances, in order to  improve the perfor-
mance of distance methods" (1, p. 676). 
This latter point, which was also demon-
strated bv Schoniger and von Haeseler 
( 3 ) ,  is also the baiis of the argument by 
Nei et al. (4). T h e  present conclusion of 
Nei et al. ( that  performance of parsimony 
methods and neighbor-joining is similar 
for simple models at  high rates of evolu-
tion if both are weighted in the same man-
ner) is different from the previous conclu-
sions of Nei and his colleagues (5 ) ,  which 
were based on  a limited samole of the 
parameter space shown in our (and now 
their) graph of the four-taxon problem; 

this demonstrates the imuortance of exam-
ining parameter space extensively for sim-
ulations of s i m ~ l etrees. 

O n e  of the major points of our article 
was that although simple evolutionary 
models may provide insight into the per-
formance of phylogenetic methods, they 
are not good descriptions of the real world. 
W e  discussed two ways that simulations 
could be made more realistic-bv incor-
porating observed or estimated substitu-
tion matrices into the substitution models 
and by using estimated trees as a basis for 
the model trees. In our examule, we com-

L , 

pared (i) the neighbor-joining method us-
ing the modified Kimura distance (NJR) 
preferred by Nei et al., (ii) the UPGMA 
method using the same modified Kimura 
distance, and (iii) parsimony with uniform 
weighting, 6-parameter weighting, and 12-
parameter weighting. In this particular ex-
ample, we found that even uniformly 
weighted parsimony outperformed both 
UPGMA and neighbor-joining with mod-
ified Kimura distances ( in  which the ac-
tual transition:transversion ratio of the 
simulations was used), although weighted 
parsimony showed the highest perfor-
mance. This indicates that some results 
from the simple simulation models may 
not apply well when the models are made 
more realistic. In particular, the perfor-
mance of neighbor-joining with NJR ap-
pears to  be sensitive to  violations of the 
Kimura model, which leads to  the better 
performance of the parsimony methods 
under the conditions tested. 

Although the comulex simulations mav 
L, 

be better indicators of method perfor-
mance than the simule simulations, we 
were careful to note that even these are 
likely to  differ radically from real evolving 
sequences. This highlights the importance 
of experimental phylogenies, which exam-
ine the evolution of real biological organ-
isms and compare inferred phylogenies to 
observed phylogenies. Nei et al. argue for 
another approach, in  which they attempt 
to identify the "biologically meaningful 
region" of the simple models of evolution. 
W e  disagree with this approach for three 
reasons. 

First, none of the parameter space in 
the simple models is actually realistic; the 
models are merely useful heuristics for un-
derstanding the general behavior of differ-
ent  methods. Thus, it is important to  look 
across the full parameter space for a given 
problem to identify the limits of each 
method. Second, Nei et al. base their es-
timate of the "biologically meaningful re-
gion" on  overall measures of genetic di-
vergence, without accounting for invari-
an t  positions. If these invariant positions 
are taken into account, then the "biolog-
ically meaningful region" would have to 

be greatly expanded. Many sequences ex-
amined by phylogeneticists are aligned by 
using these invariant sites and the remain-
ing sites are often at  or near saturation (6). 
Third, the space identified by Nei  et al. is 
based o n  just one parameter that might be 
considered biologically relevant: total 
change across the tree. Others might make 

L, " 

the case that rate differences as extreme as 
those simulated by Nei and his colleagues 
(5)  are unparalleled in  empirical studies of 
phylogenies, and that any of the regions 
near the axes in  Nei  et al.'s "biologically 
meaningful region" are actually biological-
ly irrelevant. In other words, identifying a 
"biologically meaningful region" in these 
simple models is largely subjective. Given 
that performance can be examined easily 
across the entire parameter space in these 
simple models, there seems to be n o  reason 
to limit simulations to  a few arbitrarv trees 
(or to  just the conditions where neighbor-
joining performs best) as in most previous 
simulations '(5). W e  identified this prac-
tice as one of the urinciule sources of bias 
in previous simulation studies (1).  T h e  
original motivation for our exploration of 
the four-taxon parameter space was to 
avoid this bias as much as possible. Previ-
ous simulations of four taxa (5)  examined 
only a small portion of the possible 
oarameter snace and the simulations werei.
~ m ~ t e dto conditions where the neighbor-

joining method performs best. Such simula-
tions do not give a fair or complete repre-
sentation of the exuected ~erformanceof 
~ h ~ l o g e n e t i cmethods, even for the simple 
models of evolution. 

T o  date, theoretical predictions from 
phylogenetic simulation studies have out-
paced empirical tests from experimental 
phylogenies. W e  agree with Nei et al. that 
additional study is needed to clarify the 
conditions for which each tree-building 
method oerforms well, although we sus-

L, 

pect that experimental results will play a 
major role in  this effort. For now, we are 
pleased that Nei et al. have apparently 
adopted our approach for evaluating sim-
ulations, and we expect that greater un-
derstanding of phylogenetic methods will 
result. 

In contrast to  Nei et al., Edwards, in  his 
comment, rejects the role of simulation 
studies for evaluating competing phyloge-
netic methods. H e  argues that "lilf the 

L, - -
probability model is specified, maximum 
likelihood would be the ureferred method 
in principle even if it did not lead to the 
correct answer with the highest urobabil--
ity." However, as we noted in our article 
( 1  ), current phylogenetic implementa-
tions of maximum likelihood are limited 
to relatively simple and therefore unreal-
istic models of evolution. Although this 
limitation is not a n  objection to maximum 
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likelihood per se, it nonetheless leads one 
to ask how these simple models perform in 
both simulations and with real data sets, 
when the assumptions may not be met. 
Specifying the details of a probability 
model (the maximum likelihood ap-
proach) does appear to  be a n  advantage 
when the model is correct, as shown by 
the high performance of maximum likeli-
hood in relevant simulation studies (7). 
However, the experimental data indicate 
that maximum likelihood can also perform 
more poorly than other methods when its 
assumptions are violated (as with the re-
striction-site data of our experimental viral 
lines) (1, 8) .  Presumably, Edwards' response 
would be that we need a better model of 
restriction-site change. Although we cer-
tainly encourage the development of better 
(more realistic) evolutionary models, maxi-
mum likelihood approaches are already com-
putationally limiting, and no maximum like-
lihood models have been developed for 
manv kinds of data. Given the limitations of 
our knowledge about how sequences and 
other characters evolve, and given the com-
putational limitations of maximum likeli-
hood, we see an obvious role for simulations 
and experimental studies to evaluate the per-
formance of competing methods under a 
wide varietv of conditions. In other words. 
we accept Edwards' criticism: W e  are inter: 
ested in knowing which methods are likely 
to be correct under a wide variety of condi-
tions and are not limited to askine which-
methods give credible answers if the speci-
fied model is true. Given that specified mod-
els are probably never correct in all their 
details, we see this as a necessary means 
of assessing the accuracy of phylogenetic 
methods as they are applied to real world 
problems. 

David M. Hillis 
John P. Huelsenbeck 
Department of Zoology, 

University of Texas,  
Austin, TX 78712, U S A  
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The GlSP Ice Core Record of 
Volcanism Since 7000 B.C. 

z, , ,
ielinski et al. discuss the possibility 

that the volcanic eruptions they discern 
in the GISP2 ice core may be correlated 
with climatic effects and cultural respons-
es in prehistory. Such correlation is im-
peded because Zielinski et al. do not cor-
rect 14Cdates for known eruptions to cal-
endar years. This error invalidates their 
identification of ice core "events" with 
particular prehistoric eruptions. For exam-
ple, Zielinski et al. link the event of 4803 
B.C. to the eruption of Mount Mazama, 
Oregon, dated by 14Cto 4895 plus 50 B.C. 
However, in calendar years, the Mazama 
eruption dates to about 5700 B.C. (1). 
Therefore, the most likely indication of this 
eruption in the Greenland ice record may be 
the event of 5676 B.C., which produced a 
huge sulfate residual of 654 ppb. 

Stuart J. Fiedel 
Enserch Environmental Corporation, 

1290 Wall Street W e s t ,  
Lyndhurst, NJ 07071-0661, U S A  
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G.A.  Zielinski et al. (1) Dresent a detailed. , L  

record of the volcanic contribution to sul-
fate concentrations in the GISPZ ice core. 
Table 1 of their report compares S042-
peaks (dated by annual layer counting) with 
documented volcanic eruptions over the 
past 2000 years. They then attempt [table 2 
in (1 )] to link peaks in the earlier section of 
the record with radiocarbon-dated erup-
tions that were chosen from the compila-
tion of Simkin et al. (2) on  the basis of high 
Volcanic Explosivity Index (VEI). 

Most of the eruption dates labeled as 
"B.C." in table 2 in (1) were calculated bv. . 
subtracting 1950 years from radiocarbon 
ages, rather than by using standard radio-
carbon calibration procedures (3). [Most of 
the radiocarbon dates in (2) are treated in 
the same manner.] Aside from possible 
counting errors, ice layer counting years are 
real (calendar) years, whereas radiocarbon 
years are artificial constructs. Radiocarbon 
dates must be calibrated to take into ac-
count both the use of a 5568-year half-life 
for 14C(rather than the true value of 5730 
years) and the effects of changing amounts 
of radiocarbon in the atmosphere (3),  be-
fore comparisons can be made with ice core 
chronologies. 

W e  have used a standard calibration pro-

gram (4) to generate calibrated dates from 
the radiocarbon data in  table 2 of the report 
by Zielinski et al. (Table 1). Calendar dates 
are shifted by amounts ranging from a few 
years at 1 B.C. to around 800 years for the 
period before 3000 B.C., and most of the 
proposed linkages between specific volcanic 
eruptions and particular S042- peaks are 
invalidated. Although not shown, radiocar-
bon-dated e ru~t ionsin the 100 to 700 A.D. 
range in table 1 in (1) also require correc-
tion (by 100 to 150 years, to younger cal-
endar ages). 

T h e  effects of calibration can be dem-
onstrated with the use of two of the better-
dated eruptions in  the record: Aniakchak 
I1 and Mazama. T h e  Aniakchak radiocar-
bon date, (3430 2 70 B.P.) yields two pos-
sible calendar year age ranges: 1872 to 
1840 B.C. and 1780 to 1626 B.C. Sulfur 
emissions from Aniakchak are estimated 
( 5 )  to have been the largest of a group of 
four eruptions (including Santorini) that 
are radiocarbon dated to around 3400 B.P. 
T h e  new calendar dates for Aniakchak 
overlap with the 213-ppb S042- peak at  
1695 B.C., the largest sulfate peak in al-
most four millennia. Similarly, calibration 
gives a calendar age range of 5713 to 5630 
B.C. for Mazama; the eruption occurred 
more than 700 years before the date given 
in (1). This age range includes the 654-
ppb S042- peak at  5676 B.C., one of the 
largest peaks in  the record. 

Thus, using calibrated ages, the promi-
nent sulfate ~ e a k sat 1696 B.C. and 5676 
B.C. can now be associated with known, 
large eruptions. Detailed examination of 
our Table 1 and other large peaks in the 
sulfate record (1) suggests that the use of 
these standard calibration procedures signif-
icantly improves the overall match. 

Notwithstanding the above, we believe 
that associations between radiocarbon dat-
ed volcanic events and sulfate s~ ikes ,and 
their implications, should be addiessed cau-
tiouslv. Radiocarbon datine uncertainties 
and calibration curve plateaus can lead to 
large calendar age ranges. Given such un-
certainties, almost any radiocarbon date 
G3000 B.P. can be associated with at least 
one (and often several) of the many S042-
peaks. Restricting the comparisons to the 
largest VEI eruptions and SO4*-peaks pro-
vides a stronger constraint, but is still prob-
lematic. eiven the "hits" obtained with a n  , -
uncalibrated chronology (1). Also, mis-
counting of ice layers, or radiocarbon dating 
problems (discussed in 5-7), may introduce 
svstematic datine errors.-

Furthermore, magma type (8) or aerosol 
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