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Inhibition of Ras-Induced Proliferation and 
Cellular Transformation by p16 INK4 

Manuel Serrano, Enrique Gomez-Lahoz, Ronald A. DePinho, 
David Beach, Dafna Bar-Sagi* 

The cyclin-dependent kinase 4 (CDK4) regulates progression through the G, phase of the 
cell cycle. The activity of CDK4 is controlled by the opposing effects of the D-type cyclin, 
an activating subunit, and p16INK4, an inhibitory subunit. Ectopic expression of p16INK4 
blocked entry into S phase of the cell cycle induced by oncogenic Ha-Ras, and this block 
was relieved by coexpression of a catalytically inactive CDK4 mutant. Expression of 
p16INK4 suppressed cellular transformation of primary rat embryo fibroblasts by onco- 
genic Ha-Ras and Myc, but not by Ha-Ras and E l  a. Together, these observations provide 
direct evidence that p16INK4 can inhibit cell growth. 

T h e  CDK4-cyclin D kinase complex pro- 
motes progression through the GI  phase of 
the cell cycle (1 ). In normal cells, the ret- 
inoblastoma tumor suppressor protein (Rb) 
regulates cell proliferation by binding and 
sequestering transcription factors essential 
for S phase (2). These transcription factors 
are released at late GI  by phosphorylation 
of Rb, thereby allowing cells to enter S 
phase (2). The main function of the 
CDK4-cyclin D kinase complexes may be 
to phosphorylate Rb at late G ,  (3). Indeed, 
transformed cell lines lacking functional Rb 
do not require the activity of the CDK4- 
cyclin D kinase to proliferate, and these cell 
lines are devoid of CDK4-cyclin D com- 
plexes (4). The p161NK4 protein has been 
biochelnically characterized as a protein 
that specifically binds to and inhibits 
CDK4, and thus p161NK4 may regulate Rb 
phosphorylation (5). The p161NK4 protein 
appears to act as a tumor suppressor protein 
because the p161NK4 gene (also called 
MTSI, CDK41, or CDKN2) is frequently 
deleted in tumor cell lines and shows a high 
frequency of point mutations and small de- 
letions in some tumor cell lines and primary 
tumors (6). 

To examine the effect of p161NK4 on 
entry into S phase, we microinjected cul- 
tured rat embryo fibroblasts (REF-52) ar- 
rested in Go by serum starvation with a 
DNA plasmid encoding activated Ha-Ras 

(V12Ras) together with a plasmid encoding 
human p161NK4 in either sense (p161NK4-s) 
or antisense (p161NK4-as) orientation rela- 
tive to the promoter (7). DNA synthesis 
was monitored 30 hours after injection by 
ilnmunostaining of 5-bromodeoxyuridine 
(BrdU) incorporated into newly synthesized 
DNA (8). Microinjection of a Vl2Ras ex- 
pression plasmid either alone or together 
with the p161NK4-as plasmid stimulated the 
incorporation of BrdU in -25% of the 
injected cells, whereas only 2% of the cells 
injected with the vector plaslnid stained 
positive for BrdU (Fig. 1, A and B). These 
results are consistent with the values previ- 
ously reported for V12Ras-induced mito- 
genesis in this microinjection assay (9). 
V12Ras-induced stimulation of DNA syn- 
thesis was reduced by 80% upon coinjection 
of p161NK4-s (Fig. 1, A and B). The expres- 
sion of V12Ras and p161NK4 in the injected 
cells was confirmed by double immunoflu- 
orescence staining (Fig. 1C) (10). These 
results indicate that expression of p161NK4 
can prevent V12Ras-induced entry into S 
phase. 

To test the specificity of the inhibition 
of V12Ras-induced mitogenesis by p161NK4, 
we asked whether the effect of p161NK4 
could be counteracted by coexpression of a 
catalytically inactive CDK4 mutant. We 
expected that the exogenous CDK4 mutant 
might bind p161NK4 and relieve the 
~ 1 6 ' ~ ~ ~ - m e d i a t e d  inhibition of cell growth. 
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with purified glutathione-S-transferase 
(GST)-p16'NK4 fusion protein, and the re- 
sulting complexes were recovered on gluta- 
thione-Sepharose beads. Cdc2 and CDKZ 
did not bind to GST-p16'NK4, whereas 
wild-type CDK4 did bind (Fig. 2A) (5). 
The catalytically inactive mutant CDK4- 
K35M also bound to GST-p161NK4 at least 
as efficiently as the wild-type protein (Fig. 
2A). Injection of VlZRas and CDK4-K35M 
plasmids resulted in a moderate inhibition 
(29%) of V12Ras-induced DNA synthesis 
(Fig. 2B). This inhibition could result from 
the sequestration of D-type cyclins by 
CDK4-K35M. Injection of V12Ras and 
p161NK4-s expression plasmids resulted in a 
63% inhibition of V12Ras-induced DNA 
synthesis (Fig. 2B). This inhibitory effect 
was attenuated compared with that de- 
scribed in Fig. 1B because the amount of 
p161NK4-s plasmid used in this experiment 

was reduced to half the amount used in the 
previous experiment in order to maintain 
the total amount of injected DNA constant 
among experiments. When cells were mi- 
croinjected with a mixture of three plasmids 
expressing VlZRas, CDK4-K35M, and 
p161NK4-s, the inhibitory effect of p161NK4 
was relieved (Fig. 2B). This effect of the 
CDK4-K35M mutant could result from se- 
questering p16'NK4 such that it no longer 
interacts with wild-type CDK4 or other pre- 
sumptive targets of p16'NK4. 

The mitogenic stimulation of quiescent 
cells by Ras is initiated by the rapid tran- 
scriptional activation of many cellular im- 
mediate-early genes including the c-fos gene 
(1 2). To determine whether the expression 
of p161NK4 interferes with early signaling 
events initiated by Ras, we examined the 
effect of p161NK4 on the expression of a 
V12Ras-induced reporter construct in 

I 
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Fig. 1. Inhibition of V12Ras-induced DNA synthesis by p16INK4. (A) lmmun~cytochemical staining of 
REF-52 cells with antibody to BrdU 30 hours after microinjection of the indicated expression plasmids (7, 
8). (Top) pDCR (5 ng/ml) and pRc/CMV (40 ng/ml) vectors. (Middle) V12Ras (5 ng/ml) and pl GINK4-as (40 
ng/ml). (Bottom) V12Ras (5 ng/ml) and p1 6INK4-s (40 ng/ml). (B) Percentage of BrdU-positive REF-52 
cells 30 hours after microinjection of the indicated plasmids. Values correspond to the average of three 
independent assays in which at least 200 injected cells were scored per condition in each assay. Error 
bars correspond to the standard deviation. (C) Double immunofluorescence staining of REF-52 cells with 
antibody to Ras (Anti-Ras, top) or antibody to p1 6INK4 (Anti-pl 6, bottom) 15 hours after injection of both 
V12Ras (5 ng/ml) and p1 6INK4-s (40 ng/ml) expression plasmids (7, 10). 

which the transcription of the chloram- 
phenicol acetyltransferase gene (CAT) is 
under the control of five copies of the serum 
response element (SRE) derived from the 
human c-fos promoter (5XSRE-CAT) (1 3). 
The V12Ras-induced transcriptional activa- 
tion of the SRE is dependent, among other 
factors, on the p62TCF transcription factor, 
which is phosphorylated and activated by 
mitogen-activated protein (MAP) k' inase 
(14). REF-52 cells were microinjected with 
the 5XSRE-CAT reporter plasmid and CAT 
induction was monitored by immunofluores- 
cence staining with antibodies to CAT. In 
this system, CAT induction can be detected 
as early as 3 hours after injection and is 
dependent on MAP kinase activation (9). 
REF-52 cells injected with a mixture of plas- 
mids containing VlZRas, 5XSRE-CAT, and 
p161NK4-as or p161NK4-~ exhibited similar 
amounts of CAT staining indicating that 
the expression of p161NK4 does not interfere 
with Ras-regulated gene expression during 
early G, (Fig. 3). This result suggests that 
the inhibitory effect of p161NK4 is exerted 
during late G, phase, and it is consistent 
with the role of p161NK4 as an inhibitor of 
CDK4 because the activity of the CDK4- 
cyclin D complexes is required for cell cycle 
progression at late G, phase. 

The p161NK4 protein may function as a 
tumor suppressor (6), and therefore we test- 
ed whether p161NK4 suppressed cellular 
transformation. The rat embryo fibroblast 
(REF) cotransformation assay (1 5) was used 

Table 1. Effect of pl 6INK4 on cellular transforma- 
tion induced by either Myc with V12Ras or Ela 
with V12Ras (16). Values shown are from two 
independent experiments. 

Exp. 1 Exp. 2 
Transfected 

DNA No. of %, No. of 
foci foci % 

myc + V12ra.s 35 100 123 100 
rnyc + V12ra.s + 7 20 18 15 

pl 61NK4 
Ela + V12ra.s 62 100 220 100 
Ela+V12ras+ 78 126 317 144 

pl 6INK4 

*Foci obtained in the presence of p16INK4 as a percent- 
age of the number of foci obtained in its absence. 

Table 2. Flow cytometry analysis of Saos-2 cells 
transfected with a plasmid encoding pl 6INK4 (22). 
Values are shown for a representative assay. 

Percent of cells in Transfected 
DNA 

GdG, s GdM 
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to examine and compare the antioncogenic 
activity of p161NK4 when cells were trans- 
formed with plasmids encoding either c- 
Myc and Vl2Ras or adenovirus Ela and 
V12Ras. In this assay, the oncogenic activ- 
ity of cooperating oncogenes is measured by 
the number of foci that appear in the cell 
culture monolayer 7 to 10 days after trans- 
fection and by the malignant phenotype of 
these transformed foci as determined in part 
by their ability to be established as perma- 
nent cell lines (16, 17). Under the condi- 
tions used, transfection with either Vl2Ras 
or c-Myc expression plasmids did not pro- 
duce foci (15, 18). Monolayer cultures of 

early-passage REF cells were transfected 
with pairs of plasmids encoding either c- 
Myc and Vl2Ras or Ela and Vl2Ras in the 
presence or absence of an equimolar 
amount of a plasmid encoding p161NK4 
(1 6). Transfection of REF cells with a mix- 
ture of plasmids encoding p161NK4, Myc, 
and Vl2Ras resulted in an 80 to 85% re- 
duction in the number of foci compared 
with that generated by the combination of 
Myc and Vl2Ras (Table 1). Moreover, the 
foci that arose in the presence of p161NK4 
exhibited an attenuated malignant pheno- 
type as evidenced by a reduction in their 
subcloning efficiency (1 7) and by the slow 

Anti-Ras Anti-CAT 

Fig. 2. Effect of a cata- A 
lytically inactive CDK4 
mutant on inhibition of z 

m - 25- 
7 Y 

V12Ras-induced DNA cu 8 
synthesis by p16INK4. (A) $ g 

;;; - 20- - 
m 
c, 

Binding assay of 35S- 9 15- .- 
methionine-labeled in GST-P~ 61NK4 .E 
vitro-translated CDKs to 3 g 10- 
GST-pl6 (5). (B) Per- P 
centage of BrdU-posi- 5 

GST tive cells 30 hours after 

V12Ras . 

SXSRE-CAT 

Fig. 3. Lack of effect of p16INK4 on induction of 5XSRE-CAT by V12Ras. Double immunofluorescence 
staining of REF-52 cells with antibody to Ras (Anti-Ras, left panels) or antibody to CAT (Anti-CAT, right 
panels) 3 hours after injection of the indicated expression plasmids (7, 10). (Top panels) V12Ras (5 
ng/ml), 5XSRE-CAT (50 ng/ml), and p1 6INK4-as (40 ng/ml). (Bottom panels) V12Ras (5 ng/ml), 5XSRE- 
CAT (50 ng/ml), and p1 6INK4-s (40 ng/ml). 

injection of the indicated Vector VI P a s  V12qas Vl ZRas V12Ras 
expression plasrnids into i - +  

CDK4- p16-s CDK4- 
REF-52 cells (7, 8). The totat at ~UUI it of injected DNA was K35M K35M 

maintained constant by adjusting the DNA concentration of p16-s 
the injected solutions with the relevant control vectors. The 
concentrations of the injected expression plasmids or the corresponding control vectors were as follows: 
V12Ras or pDCR vector, 5 nglrnl: p l  6INK4-s or pRc/CMV vector, 20 nglml: and CDK4-K35M or pCEP4 
vector, 20 ng/rnl. Values correspond to the average of two independent assays scoring at least 200 
injected cells per condition in each assay. Bars indicate the range of values obtained in the two assays. 

B 

SCIENCE VOL. 267 13 JANUARY 1995 

F I  

growth rate of the subclones obtained (18). 
In contrast, p161NK4 had no effect on focus 
formation induced by Ela with Vl2Ras 
(Table 1). The p161NK4 protein was ex- 
pressed in all the subclones derived from 
cells transfected with the mixture of plas- 
mids encoding Ela, VlZRas, and p161NK4, 
as determined by protein immunoblotting 
(1 7). These results suggest that p161NK4 can 
suppress cellular transformation and that 
this suppression is overcome by the Ela 
oncoprotein. Because the induction of cel- 
lular transformation by Ela is probably me- 
diated, at least in part, through its ability to 
bind and inactivate Rb (19), one possible 
interpretation of our results is that the 
p161NK4-mediated suppression of cellular 
growth is dependent on the presence of Rb. 
To further investigate the functional rela- 
tion between p161NK4 and Rb, we tested 
whether cells lacking the Rb gene are in- 
sensitive to the growth-suppressor activity 
of p161NK4. The human osteosarcoma 
Saos-2 cells are characterized by a nonfunc- 
tional deletion of the Rb gene and have 
been used extensively as an Rb-l- cell line 
model (20). Proliferating Saos-2 cells were 
transiently transfected with a plasmid en- 
coding the cell-surface marker CD20 to de- 
tect the transfected cells, together with one 
of the plasmids encoding p161NK4, Rb, or 
the general CDK inhibitor p21 (21 ). After 
transfection, cells were stained for the pres- 
ence of the CD20 marker and their DNA 
content was analyzed by flow cytometry 
(22). Transient expression in Saos-2 cells of 
either the general CDK inhibitor p21 or Rb 
significantly decreased the number of cells 
in S and (G2 + M) phases, suggesting the 
induction of G, arrest (Table 2). In con- 
trast, no G, arrest was observed when 
Saos-2 cells were transiently transfected 
with p161NK4 (Table 2). These results sug- 
gest that the absence of functional Rb pro- 
tein renders the cells insensitive to the 
growth-suppressor activity of p161NK4. In 
this context, it is of interest to note that in 
many tumor cell lines the presence of 
p16'NK4 is accompanied by the absence of 
functional Rb protein, and conversely the 
absence of p161NK4 is accompanied by the 
presence of functional Rb (23, 24). The 
inverse correlation between p16'NK4 and Rb 
expression further supports the hypothesis 
that p161NK4 and Rb function within the 
same pathway. Together, our data indicate 
that p161NK4 can inhibit cell proliferation, 
possibly as a result of the inhibition of 
CDK4 and hence the accumulation of Rb 
in its dephosphorylated growth-inhibitory 
state at G,. 
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