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Prospects for Larger or More 
Frequent Earthquakes in the Los 

Angeles Metropolitan Region 
James F. Dolan,* Kerry Sieh, Thomas K. Rockwell, 

Robert S. Yeats, John Shaw, John Suppe, 
Gary J. Huftile, Eldon M. Gath 

Far too few moderate earthquakes have occurred within the Los Angeles, California, 
metropolitan region during the 200-year-long historic period to account for observed 
strain accumulation, indicating that the historic era represents either a lull between 
clusters of moderate earthquakes or part of a centuries-long interseismic period between 
much larger (moment magnitude, M,, 7.2 to 7.6) events. Geologic slip rates and relations 
between moment magnitude, average coseismic slip, and rupture area show that either 
of these hypotheses is possible, but that the latter is the more plausible of the two. The 
average time between M, 7.2 to 7.6 earthquakes from a combination of six fault systems 
within the metropolitan area was estimated to be about 140 years. 

Californians have long anticipated the re- 
currence of the "Big One," a great earth- 
quake (M - 8) emanating from a long 
section of the San Andreas fault (SAF), 
such as occurred in 1857 and 1906. Conse- 
quently, earthquake hazard assessment and 
preparedness in southern California has his- 
torically focused primarily on the SAF and 
its various strike-slip branches (Fig. 1)  (1,  
2). In the past decade, however, several 
moderate earthquakes have occurred on 
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faults beneath the Los Aneeles metro~oli-  
u 

tan area. Moderate to large earthquakes 
(Mw 6.5 to 7.5) on these faults could po- 
tentially cause even more damage than a 
much larger earthquake on the more distant 
SAF. This was dramatically demonstrated 
by the 1994 M ,  6.7 Northridge earthquake, 
the second most expensive natural disaster 
in U.S. history (after Hurricane Andrew) 
(3). ~, 

The Los Angeles region is geologically 
complex, and almost 100 active faults have 
been identified in the area (4-8). Because 
of their size and ~roximitv to maior DODU- . . .  
lation centers, sixLmajor f&lt systems are of 
particular concern (9-1 2). 

1)  The Sierra Madre-Cucamonga sys- 
tem extends for 100 km along the northern 
edge of the densely ~opula ted  San Fernando 
and San Gabriel valleys ( 13, 14). The west- 
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(1971 dollars; -$2 billion in 1994 dollars) 
(15). 

2)  The Los Angeles basin fault system 
comprises two major blind thrust fault 
ramps (Elysian Park and Compton ramps) 
that are connected by a mid-basin flat fault 
segment (7; 16). The Whittier fault (17) 
and the northern Newport-Inglewood fault 
zone (4,  7) may represent partitioned 
strike-slip faults above the blind thrust 
faults. This system underlies the most 
densely urbanized part of the region, includ- 
ing downtown Los Angeles. 

3 )  The Santa Monica Mountains fault 
system, which extends for 90 km from near 
downtown Los Angeles westward along the 
Malibu Coast, consists of a large blind thrust 
ramp and the surficial Hollywood-Santa 
Monica-Malibu Coast subsystem, which we 
interpret as a set of predominantly left-lat- 
era1 strike-slip faults (4, 5 ,  16, 18-20). 

4) The Oak Ridge fault system is a ma- 
jor south-dipping thrust system that extends 
for more than 70 km from just east of 
Ventura to at least the eastern end of the 
Santa Clarita River Valley (21, 22). A pre- 
viously unrecognized, blind eastern exten- 
sion of this system appears to have been 
responsible for the 17 January 1994 M ,  6.7 
Northridge earthquake (8). 

5)  The San Cayetano fault, which dips 
moderately northward, extends for 40 km 
along the northern boundary of the oil-rich 
Ventura basin (23). The eastern part of this 
fault exhibits one of the highest slip rates in 
the region (7.5 to 10.4 mm (23). 

6 )  The  Palos Verdes fault, which is 
best known from its onshore extent along 
the northeastern edge of the Palos Verdes 
Peninsula in the southwestern part of the 
Los Angeles basin, also extends as a sub- 
marine feature for more than 50 km to the 
south of the peninsula (24). Recent stud- 
ies indicate that the Palos Verdes fault is 
slipping at a rate of approximately 3 mm 
year-' (25). 

The large number of damaging, moder- 
ate (4.8 5 M, 5 6.7) earthquakes that 
have occurred in the Los Angeles region 
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since 1971 has given rise to the perception 
that this earthquake frequency is typical of 
the area. In reality, however, few large 
earthquakes have occurred on faults within 
the metropolitan region during the two 
centuries of historic record, the two largest 
being the M, 6.7 Northridge and San Fer- 
nando events of 1994 and 1971, respective- 
ly (26-30). 

Geodetic studies indicate a shortening 
rate across the Transverse Ranges in the 
greater metropolitan region of approximate- 
ly 8.5 mm year-'(31 ). These data suggest 
that far too few moderate earthquakes have 
occurred within the region to account for 

Fig. 1. (A) Historical earthquake ruptures and pro- 
posed large earthquake sources within the great- 
er Los Angeles metropolitan area. Black areas 
denote surface projections of rupture planes of 
selected moderate historic earthquakes (6, 35- 
40, 65-67). Date and magnitude (M,) of each 
earthquake are also shown. Historic ruptures on 
vertical strike-slip faults (1857 and 1933 earth- 
quakes) are shown as heavy black lines. Polygons 
represent map projections of nonvertical fault 
planes. Thin lines denote near-vertical faults. In- 
termediate-width lines outline major fault systems 
that we consider could cause large earthquakes 
(Mw 7.2 to 7.6). Solid barbs denote thrust faults 
that break the surface; barbs point downdip. 
Open barbs represent the upper edge of blind 
thrust fault ramps; barbs point downdip. Predom- 
inantly strike-slip faults are shown by double ar- 
rows along the surficial trace of each fault. Maxi- 
mum credible earthquakes and their average re- 
currence intervals are shown for each fault system 
(for example, Mw 7.4/1010 on the Sierra Madre 
system indicates a recurrence interval of approxi- 
mately 101 0 years for a Mw 7.4 earthquake rup- 
turing the entire system). Comp FLT, Compton 
fault; C-SF, Clamshell-Sawpit fault; HF, Holly- 
wood fault; MCF, Malibu Coast fault; RF, Ray- 
mond fault; SJF, San Jose fault; SSF, Santa Su- 
sana fault. (B) Map showing the 51 potential, 
moderate (M, 6.5 to 6.8; average M, 6.7) earth- 
quake sources within the metropolitan region that 
we used in our moderate-earthquake scenario. 
The number within each earthquake source area 
denotes the approximate average recurrence in- 
terval (in years) for a moderate earthquake from 
each source region. In this scenario, for example, 
the source of the Northridge earthquake produc- 
es a M, 6.7 event every 1645 years. Double lines 
denote geologically reasonable segment bound- 
aries. ALT Seg, Altadenasegment; AZ Seg, Azusa 
segment; BH Seg, Baldwin Hills segment; CUC 
FLT, Cucamonga fault; LA, downtown Los Ange- 
les; LB, Long Beach; NB, Newport Beach; 0 ,  
Oxnard; P, Pasadena; PD, Palmdale; PH Seg, 
Puente Hills segment; SA Seg, Santa Ana seg- 
ment; SF Seg, San Fernando segment; SM, Santa 
Monica; V, Ventura. 

observed strain accumulation, indicating 
that a deficit of seismic energy release exists 
in metropolitan southern California (32). 

In this article we use reasonable geologic 
slip rates for the known active faults within 
the metropolitan area, together with newly 
determined local relations between mo- 
ment magnitude (M,), average coseismic 
slip, and rupture area, to attempt a quanti- 
tative assessment of the potential for future 
destructive earthquakes from faults within 
the Los Angeles metropolitan region (12). 
We compare the rate of historical seismic 
moment release with longer term rates de- 
rived from geologic data to quantify the 

historical earthquake deficit. We then pro- 
pose two end-member scenarios: In the first 
scenario, strain is released in numerous, 
moderate. Northridee-like earthauakes: in 
the second, strain is released in les's frequent 
but much larger (M, 7.2 to 7.6) earth- 
quakes. Geological slip rates allow us to 
estimate repeat times for earthquakes in 
each of these scenarios. 

Source Parameters 

Moment magnitude can be empirically re- 
lated to known geological parameters, 
such as rupture area (A) and average co- 
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seismic displacement over the rupture 
plane (D). Several compilations of parame- 
ters have been published, most of them for a 
worldwide earthquake data set [for example, 
(2,  33, 34)]; however, these relations can 
depend on geographic location and tectonic 
setting. Therefore, we have constructed new 
regressions of M, versus rupture area and 
average coseismic slip using data from eight 
well-studied, off-San Andreas southern Cal- 
ifornia earthquakes that have occurred since 
1932 (Fig. 2 and Table 1)  (3.5-41). We  
converted seismic moments (M,) for the 
eight earthquakes to M ,  using the equation 
M ,  = (log M, - 16.1)/1.5 (42). 

The regression (Fig. 2A) shows that for a 
given rupture area, M ,  for a southern Cal- 
ifornia earthquake will be larger than would 
be expected from the regressions on world- 
wide data. The discrepancy is larger for 
smaller events, ranging from about 0.3 units 
for M ,  = 5.0 to about 0.1 units for M ,  = 

7.5. 

41 , . . . . , , ' '  , , ' , ' , ' , I  , , , , , , , , '  , , , , , ,- I  
10 100 1000 

Rupture area (km2) 

I ' " " ' . ' I  ' " " " ' I  
B 

Mw = 6.30 + 1.91 Iog(D) 

From the equation above and the defi- 
nition of seismic moment, Mo= PAD, 
where p = shear rigidity, we can determine 
the relation between M ,  and D (Fig. 2B) 
(43). The relation for southern California 
contrasts markedly with that of the global 
data (34). Displacements for small southern 
California earthquakes are larger than 
would be expected, whereas displacements 
for large events (M, > 7.4) are smaller than 
expected. 

Geologically Reasonable 
Scenarios 

Recent advances in understanding the ac- 
tive tectonics and structure of the Los An- 
geles region, particularly the identification 
of large thrust fault systems beneath the 
metropolitan area, have led to a more com- 
plete understanding of potentially seismo- 
genic faults of the region (5-7). To  con- 
struct geologically realistic earthquake sce- 
narios based on these data, we used the 
location, extent, and dip of seismogenic 
faults, together with the depth of the base of 
the seismogenic zone as determined from 
the base of deepest seismicity (44), to de- 
termine fault plane area. We  then used the 
new regression equations for southern Cal- 
ifornia earthquakes to determine the mo- 
ment magnitude and average displacement 
of postulated earthquakes on each fault 
(Table 2). The recurrence interval for a 
particular earthquake is then the average 
slip estimate for each fault or fault segment 
divided by the geologically determined slip 
rate of the fault (45). 

Moderate-Earthquake Scenario 

One means of quantifying the historical 
earthauake deficit is to assume that all 
strain across the region is released uniformly 
during moderate (M, - 6.7) earthquakes 
(46). For this scenario we determined geo- 
logically reasonabie segment boundaries for 
all structures (Fig. 1B) (47). We  then arbi- 
trarily divided the segments defined by 
these boundaries into M, 6.7-sized subseg- 

ments (Fig. 1B). Because subsegment size is 
ultimately controlled by the geologically 
defined segments, which are not identical 
in size, the resulting moderate earthquake 
sources range from 175 km2 (M, 6.5) to 397 
km2 ( M ,  6.8). This process results in 51 
moderate (average M ,  6.7) earthquake 
sources within the greater Los Angeles met- 
ropolitan area (Fig. 1B). 

We converted the recurrence interval 
(RI)  for each source into an  expected earth- 
quake frequency (fl, such that f = l/RI. 
Taking the inverse of the sum of the fre- 
quencies for all 5 1 sources yields an average 
expected repeat time for M, 6.7 earth- 
quakes of about 11 years, assuming that all 
strain across the region is accommodated in - 
such events. Uniform release of strain in 
M, 6.7 earthquakes thus requires that be- 
tween 13 and 17 moderate earthquakes 
should have occurred during the historic 
period. Only two such events have been 
recorded (26, 27), indicating that there is a 
historical deficit of 11 to 15 M, 6.7 earth- 
quakes. Fifteen M, 6.7 earthquakes corre- 
spond to a cumulative stored seismic mo- 
ment of 2.12 x loz7 dyne cm, which is 
equivalent to a M, 7.5 earthquake. 

Large-Earthquake Scenario 

In this scenario, we asummed that all strain 
across the Los Angeles region is released 
during large (Mw 7.2 to 7.6) earthquakes and 
that each of the six major fault systems 
described in the introduction fails in its own 
characteristic earthauake (48). For the four , , 

single-fault systems (Sierra Madre-Cu- 
camonga, Oak Ridge, San Cayetano, and 
Palos Verdes), we used the total area of each 
fault to calculate a moment magnitude, 

Table 1. Parameters for historical southern California earthquakes (35-40) 

Earthquake Rupture area (km2) Average 
M0 Mw min-max (avg) slip (cm) 

Fig. 2. New regressions for southern California 
earthquake parameters. (A) Rupture area (square 
kilometers) plotted as a function of moment mag- 
nitude (M,) for southern California earthquakes 
(Table 1). Data sources as in (35-40). (B) Moment 
magnitude versus average slip over the rupture 
plane for southern California events was deter- 
mined by solving the equation M, = pAD. 

- 
which we then used to calculate the average 
coseismic slip for each earthquake (Table 2). 

The two remaining large fault systems 
(Santa Monica Mountains and Los Angeles 
basin) involve multiple faults with varying 
slip rates and slip directions (49). Unlike 
the four single-fault systems, strain is parti- 
tioned on the Santa Monica Mountains and 
Los Angeles basin systems such that dip-slip 

0.1 1 .o 10 

Displacement (m) 

1933 Long Beach 
1952 Kern County 

1971 San Fernando 

1987 Whittier Narrows 
1991 Sierra Madre 
1992a Joshua Tree 
1992b Landers 
1994 Northridge 
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motion is accommodated along the blind 
thrust faults. and strike-slir, motion is ac- 
commodated along the su;ficial strike-slip 
faults. Therefore, we treated these different 
subsystems independently and calculated 
sizes and recurrence intervals for earth- 
quakes occurring on each of these individ- 
ual structures. Adding the moments of these 
individual subevents yields the overall size 
of the maximum credible earthquake on 
each system (50). 

Our calculations indicate (Fig. 1A) the 
following: (i) The Sierra Madre-Cuca- 
monga system is capable of producing a M, 
7.4 earthquake approximately every 980 to 
1040 years. (ii) Rupture of the Santa 
Monica Mountains blind thrust fault would 
produce a Mu, 7.2 earthquake about every 
740 years, whereas the Hollywood-Santa 
Monica-Malibu Coast fault system could 
independently produce a Mu, 7.3 earth- 
quake approximately every 2195 to 3290 
years. If these subsystems were to rupture 
together, they would generate a M, 7.5 
earthquake. (iii) If only the blind thrust 

faults of the Los Angeles basin system were 
to rupture, they would produce a Mu, 7.5 
earthquake about every 2845 years. The 
Whittier fault is capable of independently 
producing a M, 7.1 earthquake about every 
840 to 1005 years. If the Whittier fault 
and the blind thrust faults were to rupture 
together, they could produce a M, 7.6 
earthquake. Although it is possible that 
the northern Newport-Inglewood (N-I) 
fault could rupture together with both the 
blind thrust faults and the Whittier fault, 
the extremely long recurrence interval 
that we calculate for the N-I fault indi- 
cates that this would be a very rare event. 
(iv) The  Oak Ridge system is capable of 
generating a M, 7.3 earthquake approxi- 
mately every 1010 years. (v)  Rupture of 
the entire San Cayetano fault would pro- 
duce a Mw 7.2 earthquake every 455 to 
545 years. (vi) The Palos Verdes fault 
could generate a Mw 7.2 earthquake ap- 
proximately every 925 years. 

The collective average recurrence inter- 
val for the seven large (M, 7.2 to 7.5) 

earthquakes that we propose on these six 
systems is about 140 years (51), a return 
time comparable with that of M - 7.8 to 
7.9 earthquakes on the San Andreas fault 
(52, 53). Within the Los Angeles region 
the historic record, which for Mu, 7.2 to 7.6 
earthquakes is probably complete as far 
back as the early 1780s (26, 27), is devoid 
of such large earthquakes. Thus, it has been 
at least 210 vears since the most recent 
large earthquake in the Los Angeles region, 
a time interval that is longer than the av- - 
erage recurrence interval that we calculated 
for large earthquakes. 

The two scenarios discussed above rep- 
resent reasonable end-member possibilities 
for strain release. However, the actual 
means of strain release within the Los An- 
geles region 1s undoubtedly more complex, 
with some combination of moderate and 
large earthquakes (Table 2). Hough (54), 
for example, suggests a fractal distribution 
of earthauakes in which most seismic mo- 
ment release is concentrated in infrequent, 
large events. 

Table 2. Parameters for large scenario earthquakes rupturing entire fault systems and for intermediate-sized earthquakes rupturing parts of fault systems. N/D, 
not determined. 

Fault Rupture M, Average Slip rate Recurrence Depth 
area (km2) (1OZ6) Mw slip (m) (mm year-') interval (years) (km) 

Dip 

Sierra Madre-Cucamonga 
Sierra Madre 

Asuza segment 
Altadena segment 
San Fernando segment 

Cucamonga 
Clamshell-Sawpit 

Oak Ridge 
East segment 
West segment 

Santa Monica Mountains 
(blind thrust+HF-SMF-MCn 
Santa Monica Mtns, thrust 
HF-SMF-MCF 
Hollywood 
Santa Monica 
Malibu Coast 

San Cayetano 
East segment 
West segment 

Los Angeles basin 
(blind thrusts + Whittier flt) 
Blind thrust system only 
Elysian Park thrust 

Los Angeles segment 
Puente Hills segment 

Mid-basin flat 
Compton thrust 

Baldwin Hills segment 
central segment 
Santa Ana segment 

Whittier 
Newport-lnglewood (north) 

Palos Verdes 
Santa Susana 
Raymond 
San Jose 
Newport-lnglewood (south) 

8-1 9 (E) to 0-20 (W) 
0-20 
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Implications for Seismic Hazards 

These scenarios indicate that there is a 
marked deficit in moment release in the 
greater Los Angeles metropolitan area dur- 
ing the 200-year historic period; geologic 
fault slip rates and geodetic shortening rates 
show that we have had far too few earth- 
quakes to account for strain accumulation. 
There are three possible explanations for 
this observation. (i) A significant portion of 
strain is released aseismically. (ii) Most of 
the strain is released in moderate earth- 
quakes. (iii) Much, or most, of the strain is 
released in much larger earthquakes (M, 
7.2 to 7.6) with longer recurrence intervals. 

There is no evidence that any significant 
aseismic fault creep occurs within the brit- 
tle, upper crust of the Los Angeles metro- 
politan region. If aseismic creep were occur- 
ring, we would expect to see abundant mi- 
croseismicity on major thrust fault ramps as 
well as extensive disruption of built struc- 
tures where thev lie atoD surficial faults or 
the traces of & the  f i d ing  above blind 
thrust faults 155). Neither  heno omen on has 
been observed in the met;opolitan area. If 
no significant fault creep occurs in the re- 
gion, then fault slip must be accommodated 
during earthquakes. 

If all strain release occurs during moder- 
ate, Mu, 6.7 earthquakes, then the historic 
period must represent a lull between clusters 
of such earthquakes. The average 11-year 
recurrence interval for Mw 6.7 earthquakes 
on the 51 sources we have defined predicts 
that 17 such events should have occurred 
during the past 195 years, but we have ex- 
~erienced onlv two such events. Elsewhere 
in the world, temporal and spatial clusters of 
destructive earthquakes have been observed 
at decade-long time scales along both thrust 
faults (for example, Coalinga-Kettleman 
Hills, California, 1982-85) and strike-slip 
faults (for example, North Anatolian fault, 
Turkey, 1939-44) (56). Therefore, we can- 
not rule out the possibility that much of the 
accumulated strain in the Los Aneeles met- - 
ropolitan region could be released by a clus- 
ter of moderate earthquakes. Given the level 
of damage from the Northridge earthquake, 
such a sequence would certainly strain the 
ability of the region (and the nation) to 
absorb the resultant losses. 

Paleoseismologic data are too sparse and 
incomplete to tell us when the most recent 
large earthquake occurred in the Los Ange- 
les area. However, data from several faults 
suggest that large earthquakes may indeed 
have occurred in the region. For example, 
recurrence interval data from excavations 
across the Santa Monica, Hollywood, and 
Malibu Coast faults indicate that these 
faults have ruptured during Holocene time, 
but that the most recent surface-rupturing 
earthquakes occurred several thousand 

years ago (19, 20). Furthermore, average 
recurrence intervals for the Santa Monica 
and Malibu Coast faults determined during 
trench studies (19) are approximately 3000 
to 5000 years, far longer than would be 
expected if these faults ruptured individual- 
ly (Table 2). Similarly, occurrence of the 
most recent surface-rupturing earthquake 
on the Hollywood fault more than 2000 to 
4000 years ago (20) indicates a much longer 
period than would be expected if the Hol- 
lywood fault ruptured by itself during mod- 
erate earthquakes (Table 2). These data, 
although not definitive, suggest that the 
surficial faults of the Hollywood-Santa 
Monica-Malibu Coast system rupture in 
conjunction either with each other or with 
other faults. The Santa Monica Mountains 
blind thrust fault, which may be mechani- 
cally linked to the surficial faults at depth, 
may well rupture with these surficial faults 
during large earthquakes. 

Similarly, paleoseismologic data from 
the Whittier fault suggest that this fault has 
ruptured in combination with other faults 
in the past. These data reveal a recurrence 
interval of approximately 1700 years for 
surface-rupturing earthquakes (1 7), consid- 
erably longer than the repeat time of 875 to 
1050 years that we calculate for a M, 7.1 
earthquake generated by rupture of only the 
Whittier fault (Table 2). The Whittier fault 
may rupture together with either the north- 
ern Elsinore fault (57) or the Elysian Park 
blind thrust (7). 

These data indicate that events such as 
those proposed in our large-earthquake sce- 
nario (M, 7.2 to 7.6) may have occurred in 
the Los Angeles metropolitan region in the 
past and may recur in the future. Similar 
tectonic regimes elsewhere in the world 
have produced thrust- and reverse-fault 
earthquakes of this size [for example, 1944 
San Juan, Argentina, surface wave magni- 
tude (M,) 7.4; 1952 Kern County, Califor- 
nia, M, 7.4; 1964 Niigata, Japan, M, 7.5; 
1977 Caucete, Argentina, M, 7.4; 1978 Ta- 
bas-e-Golshan, Iran, Ms 7.4; 1980 El As- 
nam, Algeria, M 7.3; 1988 Spitak, Arme- 
nia, Ms 6.9; and 1992 Suusamyr, Kyr- 
gyzstan, M 7.41 (58). 

We conclude that faults within the Los 
Angeles region are capable of generating 
earthquakes in the range of Mu, 7.2 to 7.6. 
Documented examples of long-term earth- 
quake clustering (52, 59) indicate that we 
could well be in the middle of a centuries- 
long quiescent period. However, it has been 
at least 210 years since such an event has 
occurred in the region, indicating that we 
are within the expected average recurrence 
time for an earthquake of this size, as deter- 
mined by our model. The effects of such a 
large earthquake would be substantially dif- 
ferent from the recent, moderate Northridge 
earthquake in several important respects. 

Specifically, a large earthquake would cause 
strong ground shaking over a much larger 
area and would have a much longer duration. 
Given the potentially devastating effects 
such a large earthquake would have on life 
and property in the region, we believe that 
Los Angeles must consider the potential for 
such an  event in future planning scenarios. 
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