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Specific Association of Human Telomerase 
Activity with Immortal Cells and Cancer 
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Synthesis of DNA at chromosome ends by telomerase may be necessary for indefinite 
proliferation of human cells. A highly sensitive assay for measuring telomerase activity was 
developed. In cultured cells representing 18 different human tissues, 98 of 100 immortal and 
none of 22 mortal populations were positive for telomerase. Similarly, 90 of 101 biopsies 
representing 12 human tumor types and none of 50 normal somatic tissues were positive. 
Normal ovaries and testes were positive, but benign tumors such as fibroids were negative. 
Thus, telomerase appears to be stringently repressed in normal human somatic tissues but 
reactivated in cancer, where immortal cells are likely required to maintain tumor growth. 

Telomeres are specialized structures at the 
ends of eukaryotic chromosomes that ap- 
pear to function in chromosome protection, 
positioning, and replication (1,  2). In ver- 
tebrates, telomeres consist of hundreds to 
thousands of tandem repeats of the se- 
quence TTAGGG and associated proteins 
(2,  3). Analysis of chromosome terminal 
restriction fragments (TRFs) provides the 
composite lengths of all telomeres in a cell 
population (4-6). In all normal somatic 
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cells examined to date, TRF analysis has 
shown that the chromosomes lose about 50 
to 200 nucleotides of telomeric seauence 
per cell division (4-6), consistent with the 
inability of DNA polymerase to replicate 
the ends of linear DNA (7). This shorten- 
ing of telomeres has been proposed to be 
the mitotic clock by which cells count their 
divisions (8), and a sufficiently short telo- 
mere may be the signal for replicative se- 
nescence in normal cells (5, 6 ,  9). In cond 
trast, all immortal cells examined to date 
show no  net loss of telomere length or 
sequence with cell division, suggesting that 
maintenance of telomeres is required for 
cells to escape from replicative senescence 
and proliferate indefinitely '( 10-1 2). 

Telomerase is a r ibonu~leo~rotein that 
synthesizes telomeric DNA onto chromo- 

SCIENCE VOL. 266 23 DECEMBER 1994 201 1 



soma1 ends using a segment of its RNA 
component as a template (13, 14). Telo- 
merase activity can be measured in vitro by 
a  rimer extension assav in which telomer- 
ase synthesizes telomeric repeats onto oli- 
gonucleotide primers (1 3, 15). In extracts 
of human cells and tissues, telomerase ac- 
tivity was identified in nine immortal cell 
lines and in ovarian carcinoma. but was not 
detected in four normal somatic cell cul- 
tures or in normal tissues adjacent to the 
carcinoma (1 0-1 2, 15, 16). Together with 
TRF analysis, these results suggest that tel- 
omerase activity is directly involved in telo- 
mere maintenance, linking this enzyme to 
cell immortality. 

To  extend these findings to a broad 
ranee of human cells and tissues. we devel- 

'7 

oped improved methods for extraction and 
detection of telomerase activitv. With Dre- 
vious methods, reliable telomerase extrac- 
tion by hypotonic swelling and physical 
disruption of cells required at least lo7 to 
10' cells, and the extraction efficiency var- 
ied between cell types (10, 15). Thus, a 
detergent lysis method (1 2) was improved 
to allow more uniform extraction of telo- 
merase activity even at low cell numbers 
(1 7). The conventional activity assay was 
used with all telomerase specificity controls 

Table 1. Telomerase activity in normal and im- 
mortal cells (29). 

Telomerase 
Tissue of activity 

origin Cell type (no. positive/ 
no. tested) 

Skin 
Skin 
Connective 
Joint 
Adipose 
Breast 
Breast 
Lung 
Lung 
Lung 
Stomach 
Pancreas 
Ovary 
Cervix 
Cervix 
Uterus 
Kidney 
Kidney 
Bladder 
Bladder 
Colon 
Prostate 
Prostate 
Prostate 
CNS 
Retina 
Blood 

Tumor 
Normal 
Tumor 
Normal 
Tumor 
Tumor 
Normal 
Tumor 
Transformed 
Normal 
Tumor 
Tumor 
Tumor 
Tumor 
Normal 
Normal 
Tumor 
Transformed 
Tumor 
Normal 
Tumor 
Tumor 
Transformed 
Normal 
Tumor 
Transformed 
Tumor 

(1 3, 15) to demonstrate authentic telomer- 
ase activity in the detergent extracts. 

To increase the sensitivity, speed, and 
efficiency of detecting telomerase activity, 
we developed a polymerase chain reaction 
(PCR)-based assay designated TRAP (for 
telomeric repeat amplification protocol) 
(Fig. 1). In the TRAP assay, telomerase 
synthesizes extension products, which then 
serve as the templates for PCR amplifica- 
tion (Fig. 1A). Reaction conditions suitable 
for both telomerase and Taq polymerase 
activities (18) were devised to allow the 
TRAP assay to be performed in a single 
reaction tube (Fig. 1B). Multiple control 
experiments demonstrated that a positive 
signal in the TRAP assay required a ribo- 
nucleoprotein in an immortal cell extract 
capable of extending the TS oligonucleo- 
tide with three or more TTAGGG repeats, 
validating the assay for specific detection of 
telomerase activity (Fig. 1C). 

Telomerase-positive extracts from an 

immortal cell line (human 293 kidney cells) 
were produced routinely from lo5 cells as 
assessed by TRAP assay (Fig. ID, lane 3), 
with a current lower limit of lo4 cells for 
CHAPS extraction (lane 4) (1 9). A quan- 
tity of extract representing lo3 cells (1% of 
an extract from lo5 cells) reproducibly gave 
a clear, positive signal in the TRAP assay 
(lane 3) with a current lower limit of 10' 
cells for detection of telomerase activity at 
27 PCR cycles (lane 4). A similar level of 
detection resulted from serial titration of a 
single extract (Fig. 2B). Together the im- 
provements in extraction efficiency and as- 
say sensitivity increase detectability of tel- 
omerase activity by a factor of lo4. Mixing 
of immortal cells and normal somatic cells 
prior to extraction, even at a ratio of 1 : lo4, 
does not interfere with the lower limit of 
detection. Detection of telomerase activity 
in 10' immortal cells (Fig. ID, lane 4), but 
not in lo5 BJ normal somatic cells (lane l ) ,  
indicates that the difference in activity be- 

A TS telornerase product B 
I i 

TS Telorneric repeats TRAP bunsr 
dNTPs 

5'-AATCCGTCGAGCAGAGTr og ggttag ggttag ggttog-3' TS abgenuclmude 
I I  I 1  l I l * l I  I l I * l I  l l l * l I  Taq polymerase 

f - - -  3 '  -AA T( ( C b l l C  C C A n C  CCA'rrCCC-5' CO" 1'5sue *"Iran M Wax banter 

CX Lyophlllzed CX prlmer 

5 ' - ~ A T C C G T C G A G C A G A G T T  3' - - - - - - - * 
I 

TS 

C 
P r e t r e o t  - - - A RMSS m. Prot - - 

E x t r a c t  293 - 291 191 293 293  293 BJ 2 V l U t I t  

TS przmer - + + + + + + + + 
s" .--- 

3J 
.7 

293 

07 ; 08 05 04 
03 0' k. 01 ~ e l I 5  ln 

extract 
io5 i04~03 i02  10 0 t -~~ .o f& in  

Fig. 1. TRAP assay for telomerase activity in detergent extracts. (A) PCR amplification of telomerase 
extension products. Telomerase synthesizes telomeric repeats (lowercase sequence) onto the nontelo- 
meric oligonucleotide TS (5'-AATCCGTCGAGCAGAGTT-3'). Such telomerase products are specifically 
amplified by PCR with the downstream primer CX [5'-(CCCTTA),CCCTAA-3'1 and the upstream primer 
TS (26). DNA synthesis by PCR (broken arrows) and optimal annealing of the CX primer (vertical lines) are 
shown. Asterisks indicate designed mismatches in CX that reduce primer interaction (27). (B) Single-tube 
arrangement of the TRAP assay. The CX primer is initially separated from the rest of the reaction mix by 
a wax barrier (78). (C) Specificity of TRAP assay for telomerase activity. Lane 1, control omitting TS 
oligonucleotide; lane 2, control omitting cell extract; lane 3, TRAP assay of immortal 293 cell extract; lane 
4, heat-treated 293 extract (28); lane 5, RNase-pretreated 293 extract; lane 6, phenol-extracted 293 
extract; lane 7, protease-pretreated 293 extract; lane 8, normal fibroblast BJ cell extract; and lane 9, 
extract enriched for telomerase by DEAE chromatography (25). Molecular sizes (in base pairs) of DNA 
markers (Marker V, Boehringer Mannheim) are shown on the left. (D) Limits of detergent extraction and 
TRAP detection. In each lane, 1 % of the total extract (1 pI of 100 pI) was assayed. Lane 1, extract from 
1 O7 normal fibroblast BJ cells; lanes 2 to 5, extracts from 1 06, 1 05, 1 04, and 1 O3 immortal 293 cells, 
respectively; and lane 6, control assay with lysis buffer only (19). 
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tween immortal and mortal cells is at least 
1000-fold. 

These methods were used to measure 
telomerase activity in dividing cultures of 
various immortal cell lines and normal 
somatic cells derived from different tissues 
and individuals. This survey included a 
total of 100 immortal cell lines and 22 
normal somatic cell cultures from 18 dif- 
ferent tissues (Fig. 2 A  and Table 1). As 
opposed to other enzymes involved in 
DNA synthesis, telomerase is no t  growth- 
regulated: None of the actively proliferat- 
ing normal somatic cell cultures displayed 
detectable telomerase activity in the 
TRAP assay. Of the 100 immortal cell 
lines, 94 were tumor-derived lines and 6 
were cell lines transformed wi th  viral on- 
coproteins. All o f  the 94 tumor lines con- 
tained telomerase activity. However, two 
lines transformed wi th  SV40 T antigen 
tested negative for telomerase activity. 
This result was unexpected as TRF analy- 
sis had shown that these cells have sub- 
stantially longer telomeres than the nor- 
mal cells from which they were derived. 

It has been suggested that telomere 
length might be an indirect measure of 
telomerase activity in a cell population 
(20). T o  test this hypothesis, we deter- 
mined TRF length (5) for several of the 
immortal cell lines assayed for telomerase 
activity. Although most of the cell lines had 
short TRFs (<4 kb), some had intermediate 
(4 to 10 kb) or long TRFs (> lo  kb). TRF 
length did not  correlate wi th the levels of 
telomerase activitv measured in these cells 
and thus is not  a reliable marker for telo- 
merase activity. 

The difficulty in establishing cell lines 
from tumor samples has led many investi- 

Table 2. Telomerase activity in human tumors and tissues. Germline tissue (ovary and testis) and almost 
all advanced tumors were positive for telomerase activity, whereas tissue adjacent to tumors was 
generally negative. However, rapidly proliferating benign growths such as leiomyomas (fibroids) were 
telomerase negative. Tumor tissue of all eight colon carcinomas exhibited telomerase activity, whereas 
extracts of adjacent colonic muscosa without overt tumor tissue, benign tubular adenoma, and a colonic 
polyp were negative. Although telomerase activity was not detected in some tumor tissue samples (for 
example, three of four node-negative breast cancers), some tissue sarnples that were apparently tumor 
free had telomerase activity. We believe that tumor cells can be present in macroscopically normal 
adjacent tissues of cancer patients with advanced disease, even if they are not detected by routine 
pathological examination. All eight normal prostatic tissues examined were negative for telomerase 
activity, whereas two adenomatous carcinomas of the prostate were positive. Because prostate cancer 
can be found localized to a small, peripheral region of the prostate gland, we confirmed by pathologic 
examination that the tissue adjacent to the sample contained tumor cells. Of 10 samples of benign 
prostatic hyperplasia (BPH), 1 was positive for telomerase activity. This was unexpected, because there 
does not appear to be a direct correlation between the presence of BPH and the development of prostate 
cancer. This patient may have had prostate cancer that was not detected microscopically. Telomerase 
activity was detected in 3/5 samples of prostatic intraepithelial neoplasia type 3 (PIN3). Although it is not 
known whether prostatic intraepithelial neoplasia (PIN) is an obligate precursor of adenocarcinoma, there 
is circumstantial evidence for the premalignant nature of PIN (30). 

Tissue type 

Telomerase Telomerase 
activity Tissue type activity 

(no. positive/ (no. positive/ 
no. tested) no. tested) 

Fetal testis 2/2 Normal breast tissue (from 0/8 
Adult testis 1 / I  noncancer patients) 
Fetal ovary 212 Prostate cancer 2/2 
Ovarian follicle 1/1 Prostatic intraepithelial neoplasia 3/5 
Gastrointestinal malignancies type 3 

Hepatocellular carcinoma* 1/1 Benign prostatic hyperplasia 1/10 
Colon cancer 8/8 Normal prostatic tissue 0/8 
Adjacent colonic tissue o n  Neuroblastoma 5/5 
Colonic tubular adenoma 
Colonic polyp 

Brain tumors 6/8 
Lung small-cell carcinoma 

Squamous cell carcinoma (head 
4/4 

and neck) 4/1 Rhabdomyosarcoma 1 /1 
Adjacent tissue 6 6 Leiomyosarcoma 3/3 

Wilms tumor 6/6 Leiornyoma (fibroids) 0/11 

Adjacent kidney tissue 216 Normal myometrium 0/10 

Breast cancer (ductal and lobular, 18/20 Hematological malignancies 
node positive) Acute lymphocytic leukemia 1 4/16 

Breast cancer (axillary node 1 /4 Chronic lymphocytic leukemia 2/2 
negative) Lymphoma (adult) 5/5 

Adjacent tissue 2/20 

'Needle biopsy, frozen 3 months. 

Fig. 2. TRAP assays of human cells and tissues. A 
(A) TRAP assays of 10" cell equivalents per reac- 

B 

tion. Even-numbered lanes, extracts pretreated 
with RNase. Lanes 1 and 2, breast carcinoma line 
MCF-7/ADR-RES: lanes 3 and 4, pancreatic car- 
cinorna line AsPC-1 ; lanes 5 and 6, prostate car- 
cinorna line PC-3: lanes 7 and 8, melanoma line 
M14; lanes 9 and 10, normal foresk~n fibroblast 
BJ; lanes 11 and 12, lung carcinoma line NCI- 
H23; lanes 13 and 14, normal stromal fibroblast 

. 
31YO; lanes 15 and 16, normal lung fibroblast 
IMR-90; lanes 17 and 18, ovarian carcinoma line w - m  3 

OVCAR-3; lanes 19 and 20, colon carcinoma line 
d 4 

COL0205; and lanes 21 and 22, transformed kid- 1 2 3 6 5 6 7 B 9 10 11 12 13 14 15 16 17 $ 8  19 20 21 22 
4 
d 

ney line 293. (B) Normal germline tissues such as ovary (including a single ovarian follicle) and fetal and adult . &  

testis (Table 2) were telomerase-posit~ve, but other adult tissues were negative. Over 90% of the advanced 
tumors surveyed were telomerase-positive, whereas less advanced cancers such as axillary node-negative 
breast tumors were generally (but not always) negative. Extracts from a small sampling of tissues such as rC 
a colonic polyp, a tubular adenoma, and leiomyomas (fibroids) were also negative for telomerase. A 
telomerase-positive immortalized human breast epithelial cell line was used as the standard (10, 100, and 
1000 cell equivalents per assay), and lysis buffer as the negative control. Each tissue sample consisting of 50 to 100 mg of frozen (-80°C) tissue was washed 
in ice-cold wash buffer (1 7) then homogenized with 200 FI of lysis buffer (4°C) in Kontes tubes with matching pestles rotated at 450 rpm. After 25 min at 4"C, 
the lysate was centrifuged at 16.000g for 20 rnin at 4°C and the supernatant frozen in liquid N, and stored at -80°C. A sample of the extract (6 kg  of protein) 
was used for each telomerase assay. After 30 rnin at room temperature, the reaction mixture (18) was heated at 90°C for 90 sand subjected to 31 PCR cycles 
at 94°C for 30 s, 50°C for 30 s. and 72°C for 45 s. 
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gators to question whether cancer cells in 
vivo are immortal (21), However, the detec­
tion of telomerase activity in tumor cells 
obtained from ascitic fluid of patients with 
metastatic ovarian carcinoma (11) suggests 
that at least some cancer cells may indeed be 
immortal This hypothesis can be tested by 
examining the correlation between telo­
merase activity and tumor progression in a 
number of different human tumor types. 
However, the lack of primary human tumor 
samples of sufficiently large size severely lim­
its the ability to measure telomerase activity 
by the conventional assay. Also, in contrast 
to tumor cell lines, primary tumors are 
rarely homogeneous and often consist of 
mixtures of tumor cells with surrounding 
stromal tissue. With the conventional tel­
omerase assay, a threefold excess of normal 
cells did not inhibit telomerase activity of 
cultured tumor cells. With the TRAP as­
say, telomerase could be detected if 1 in 
104 cells was immortal. These results in­
dicated that analysis of primary tumor ma­
terial for telomerase activity would be fea­
sible. Normal somatic and germline tissues 
were obtained at autopsy from individuals 
who died of natural causes. As predicted, 
telomerase activity was easily detected in 
germline tissue but not in 50 other adult 
tissues examined (22). TRAP assays per­
formed on a wide range of normal and 
tumor tissues indicated that 90 of 101 
malignant tumor samples specifically ex­
pressed telomerase (Fig. 2B and Table 2). 
These data confirm the stringent repres­
sion of telomerase in normal somatic tis­
sue and suggest that malignant progression 
may depend on the activation of telomer­
ase (23, 24}. 

It is possible that in long-lived species 
such as humans, repression of telomerase in 
somatic tissues evolved to reduce the prob­
ability of cancer. If this were true, some 
short-lived mammalian species might dis­
play weak repression of telomerase in so­
matic tissues, a high frequency of spontane­
ous cell transformation, and a high frequen­
cy of cancer on a per cell, per year basis. 
Additional studies are needed to test this 
hypothesis. 

In conclusion, the development of im­
proved assay methods has permitted a sur­
vey of telomerase activity in a wide variety 
of human cells and tissues. The presence 
of telomerase in 98 of 100 cultured immor­
tal cell lines, 90 of 101 primary tumors, 
and adult germline tissues, and the ab­
sence of detectable telomerase in 22 nor­
mal somatic cell cultures and 50 normal or 
benign tissues, provide strong support for 
hypotheses linking telomerase to cell im­
mortality. Expression of telomerase in al­
most all advanced malignancies tested 
suggests that immortal cells are likely 
required to maintain tumor growth. These 

2014 

methods should facilitate a further under­
standing of telomerase biology, potentially 
leading to diagnostic and therapeutic 
applications. 
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Assembly of Transcriptionally Active RNA 
Polymerase I lnitiation Factor SL1 from 

Recombinant Subunits 
Joost C. B. M. Zomerdijk, Holger Beckmann, Lucio Comai, 

Robert Tjian* 

Initiation of ribosomal RNA synthesis by RNA polymerase I requires the promoter selec- 
tivity factor SLI, which consists of the TATA-binding protein, TBP, and three associated 
factors, TAF,s 110, 63, and 48. Here the in vivo and in vitro assembly of functional SLI 
complexes from recombinant TAFls and TBP are reported. Complexes containing TBP 
and all three TAF,s were as active in supporting transcription from the human ribosomal 
RNA gene promoter as endogenous SLI , whereas partial complexes without TBP did not 
efficiently direct transcription in vitro. These results suggest that TAF,s 11 0, 63, and 48, 
together with TBP, are necessary and sufficient to reconstitute a transcriptionally active 
SLl complex. 

Transcriptioh of the genes for 28s and 18s 
ribosomal RNA by RNA polymerase I 
(RNA pol I) in mammalian cells is a highly 
regulated process that has been intensively 
studied for about two decades ( I ) .  Three 
components, RNA pol I, the upstream bind- 
ing factor UBF, and the promoter selectivity 
factor SLl are minimally required for accu- 
rate initiation of transcription from the hu- 
man ribosomal promoter (2).  UBF has been 
purified to homogeneity and cloned, and 
recombinant versions of UBF are kavailable 
(3). Until recently the subunit composition 
and biochemical activities of SL1 were un- 
known. Recent advances in antibody affinity 
chromatography' allowed us to purify small 
quantities of SL1 from HeLa (human) nu- 
clear extracts to apparent homogeneity. 
These studies revealed that SLl is composed 
of the T A T A  binding protein, TBP, and at 
least three associated subunits of 110, 63, 
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and 48 kD, called TAFls (TBP associated 
factors for RNA pol I) (4). 

Although reconstitution of SL1 with re- 
combinant TBP and partially purified TAF, 
complexes that contain the three subunits 
obtained by TBP antibody affinity chroma- 
tography suggested that these associated fac- 
tors are important for the assembly of tran- 
scriptionally active SL1 complexes (4), it 
was not possible to determine whether these 
subunits were sufficient to direct Dromoter 
and RNA polymerase selectivity. Further pu- 
rification and disruption of the complex and 
the reassembly of active SL1 proved to be 
impractical given the low amount of SL1 in 
the cell and the limited amounts of purified 
material obtainable. Thus, it became evident 
that future advances in determining the 
structure and function of this essential hu- 
man transcri~tion comolex would reauire 
molecular cloning and high level expression 
of each subunit. In the accompanying paper, 
we describe the isolation of complementary 
DNAs (cDNAs) encoding each of the three 
human TAF,s Dresent in SL1 (5). Here. we , . ~, 

describe the assembly of partial and com- 

plete SL1 complexes. We have assembled 
transcriptionally active SL1 in HeLa cells 
infected with recombinant vaccinia viruses 
expressing TAFIs and TBP. As an altema- 
tive procedure for reconstituting SL1, we 
have also reconstructed stable complexes 
containing the three TAF,s and TBP in vitro - 
using purified recombinant proteins. After 
isolating these in vivo and in vitro assembled - 
complexes by antibody affinity chroma- 
tography, their ability to support accurate 
initiation of transcription from the human 
ribosomal promoter in  a reconstituted re- 
action containing UBF and R N A  pol I was 
tested. Our results suggest that a complex 
containing TAFI 110, 63, 48, and TBP is 
both necessary and sufficient to provide 
SL1 function. 

Using a combination of epitope-tagged 
versions of the recombinant TAF,s. we , , 
have shown that each of the subunits of 
SL1 can individuallv bind to TBP. In addi- 
tion, the TAF,s aipear to contact each 
other in order to form a relatively stable 
complex that presumably involves multiple 
interactions. These TBP-TAF, and TAF,- 
TAF, interactions do not require DNA (5). 
However, it was of critical importance to 
determine whether, these protein-protein 
contacts resulted in a functional SL1 com- 
plex that could support transcription of the 
ribosomal promoter by RNA pol I. Our 
initial attempts to assemble functional com- 
plexes from TAF,s expressed in Escherichia 
coli or in insect cells infected with recom- 
binant baculoviruses. failed to ~ r o d u c e  tran- 
scriptionally active S L ~ .  One  ieason for our 
inabilitv to reconstitute active SL1 com- 
plexes was the difficulty in obtaining suffi- 
ciently high concentrations of the four sub- 
units of SLl  in order to perform the assem- 
bly reactions. The  bacterially expressed pro- 
teins were largely ,insoluble, and the 
amounts of soluble baculovirus expressed 
TAFIs were limited. Consequently, we tried 
alternative means of assembling SLl  from 
the recombinant subunits. W e  approached 
the problem with two complementary strat- 
egies: in vivo assembly by co-expression of 
the subunits and in vitro assembly of dena- 
tured and renatured vurified subunits. 

In order to attempt in vivo assembly of 
the four components of SL1, we generated 
recombinant vaccinia viruses that would di- 
rect the ~roduct ion of each subunit in HeLa 
cells upon co-infection with the various 
combinations of viruses. W e  constructed the 
appropriate vaccinia virus vectors such that 
the recombinant TAFIs could be distin- 
guished from endogenous TAF,s on  the basis 
of differences in molecular weight and anti- 
body specificity by fusing a unique epitope 
tag to each subunit. TAF148 was constructed 
with a FLAG-tag, TAF163 was fused to the 
Polyoma-Myc (PM) epitope, and TAF,llO 
was linked to the hemagglutinin-peptide 
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