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lsotopic Composition of Old Ground Water 
from Lake Agassiz: Implications for 

Late Pleistocene Climate 
V. H. Remenda,* J. A. Cherry, T. W. D. Edwards 

A uniform oxygen isotope value of -25 per mil was obtained from old ground water at 
depths of 20 to 30 meters in a thick deposit of clay in the southern part of the glacial Lake 
Agassiz basin. The lake occupied parts of North Dakota and southern Manitoba at the end 
of the last glacial maximum and received water from the ice margin and the interior plains 
region of Canada. Ground water from thick late Pleistocene-age clay deposits elsewhere, 
a till in southern Saskatchewan, and a glaciolacustrine deposit in northern Ontario show 
the same value at similar depths. These sites are at about 50°N latitude, span a distance 
of 2000 kilometers, and like the Lake Agassiz sites, have a ground-water velocity of less 
than a few millimeters per year. The value of -25 per mil is characteristic of meltwater 
impounded in the southern basin of Lake Agassiz. This value corresponds to an estimated 
air temperature of -16"C, compared with the modern temperature of 0°C for this area. 

A t  some locations in the glaciated regions 
of North America and elsewhere, the stable- 
isotope content of old ground water provides 
a terrestrial record of pre-Holocene climate. 
Old ground water is usually associated with 
large confined aquifers with long residence 
times and long flow paths. However, com- 
plex mixing may dampen climate signals. 
Old ground water in thick unfractured aqui- 
tards also has long residence times but short 
travel ~ a t h s  and limited mixing. These aqul- 
tards may preserve isotopic signatures char- 
acteristic of the water that was incorporated 
at the time of deposition. O n  the basis of 
field measurements of hydraulic gradients 
and hvdraulic conductivities and calcula- 
tions of average linear ground-water veloci- 
ties, we anticipate that original pore water is 
still present in thick aquitards deposited dur- 
ing the last glaciation ( I ) .  The isotopic sig- 
nature of pore water from such aquitards 
could potentially yield climate information 
from the late Pleistocene. 

In this report, we describe ground-water 
conditions at four field sites located in the 
aquitard deposited in the southern basin of 
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glacial Lake Agassiz (Fig. 1). At  the end of 
the last glacial maximum, Lake Agassiz oc- 
cupied parts of North Dakota and southern 
Manitoba and was the receiving body for 
meltwater coming directly from the ice 
margin and from meltwater channels origi- 
nating in western Canada (2) .  The sedi- 
ments comprising the aquitard were depos- 
ited from about 11,700 to 9500 years ago, 
following a southward readvance of the ice 
sheet. The sediments range in thickness 
from about 10 to 80 m. 

A t  the Montcalm site, about 50 km 
south of Winnipeg, 40 m of glaciolacustrine 
clay overlie 30 m of till. Dolostone under- 
lies the glacial sediments. A t  the Emerson 
site, less than 1 km north of the Canada- 
United States boundary, 30 m of glacio- 
lacustrine clay and 30 m of till overlie the 
same dolostone. A t  the Drayton site, 50 km 
south of the international boundary and 21 
km west of the Red River, 76 m of Lake 
Agassiz deposits overlie 18 m of till and  
shale. A t  the Manvel site, 100 km south of 
the border, 28 m of clay overlie a thin till (1 
to 2 m thick) underlain by sandstone. 

A t  the Montcalm, Emerson, and Manvel 
sites, sediment cores were obtained. Moni- 
toring wells were installed in-vertical clusters 
through the clay ( 3 ) ,  except at Emerson, 
where one till and one bedrock well were 
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installed (4). A t  Montcalm, Manvel, and 
Drayton, rising head response tests were 
done to determine the hydraulic conductiv- 
ity K (5). A t  Montcalm and Manvel, labo- 
ratorv values of K were determined from core 
samples taken from the same depth interval 
at which each monitoring well was screened. - 

Water samples were obtained periodical- 
ly from all of the monitoring wells that 
yielded enough water for samples. Ground- 
water samples from Montcalm, Drayton, 
and Manvel were analyzed for 180, 'H, and 
3H. Pore water squeezed from core samples 
from Montcalm was analvzed for 3H and 
180. Pore water squeezed from core samples 
from Emerson was analvzed for 1 8 0  16). ~, 

Laboratory and field'tests show that the 
values of K for the sediments deeper than 
10 m are 3 X 10-" m/s or less. Above 10 
m, the values of K range from 1 x to 
5 X 1,O-lo m/s, presumably enhanced by 
fractures. Fractures, identified bv oxide 
coatings, are common near the ground sur- 
face in most clayey deposits and can in- 
crease field K to values as much as two 
orders of magnitude greater than those mea- 
sured on core samples (7, 8). A t  Montcalm, 
Drayton, and Manvel, the close agreement 
between field- and laboratorv-measured val- 
ues of K shows that the zone of abundant 
fractures does not extend more than a few 
meters below the ground surface. 

A t  both Montcalm and Emerson, the 
average annual water table currently lies 
about 3 m below ground surface, Measured 
hydraulic heads are above ground surface in 
wells screened at depths ranging from 5 to 
30 m in the clay at Montcalln and wells 
completed in the till and bedrock below the 
clay at Emerson. The calculated vertical hy- 
draulic gradient i is 0.15 at Montcalm and 
0.1 at Emerson. The water in the underlvine , - 
dolostone aquifer is brackish and unsuitable 
as a water supply; therefore, it is unlikely 
that these gradients have been disturbed by 
pumping. For Montcalm, the average linear 
ground-water velocity v calculated from the 
mean field-measured K, i = 0.15, and the 
measured porosity n = 0.5 is 13 m per lo4 
years (9). The same calculation with the 
laboratory-measured K gives 9 m per lo4 
years. For Emerson, the same ranges of K 
give u from 9 to 6 m per 104 years."For these 
velocities and thicknesses of clay (40 In at 
Montcalrn and 30 rn at Emerson), little ad- 
vective displacement of original Lake Agas- 
siz pore water should have occurred at either 
site since deposition. 

A t  Drayton, where there are 76 m of 
clay, measured hydraulic heads from wells 
screened at depths ranging from 5 to 28 m 
are at or above ground surface. and i = 0.03. 
Assurning thatyhis gradient 'has been un- 
disturbed by pumping and using the mea- 
sured K = l X 10-l1 m/s and n = 0.5, we 
find v to be 1 rn per 104 years. 

The artesian Dakota aquifer underlies the 
Manvel site. The hydraulic head of the aqui- 
fer has decreased in this century because of 
unchecked exploitation (10). The best esti- 
mate of hvdraulic head in the aauifer before 
pumping is 14 m above ground surface on 
the basis of a record for one well in the town 
of Manvel (11), less than 1 km from the 
Manvel site. The present mean gradient is 
0.2. For this gradient, u = 25 m per lo4 years. 
For a hydraulic head of 14 m above ground 
surface and the present depth to the water 
table of about 3.5 m, the estimated paleogra- 
dient is 0.63 and v = 80 m per lo4 years. In 
this case, upward ground-water flow would 
have displaced all or most of the original 
pore water in the clay with water from the 
underlying Dakota aquifer. 

At  Montcalm, 3H concentrations (6) 
measured on water extracted from core sam- 
ples from depths of 7 to 30 m (0.8 to 1.6 TU, 

with one sample at 3.5 T U )  were near the 
nominal counting derection limit (2C.8 

u 

TU) ,  Considering the extraction and count- 
ing procedure, these levels are insignificant. 
A t  Manvel, 3H concentrations measured on 
samples from wells screened at 10 and 19 m 
below ground surface were also insignificant 
(<0.8 t 0.5 TU) .  The lack of significant 3H 
below the surficial weathered zone is an in- 
dication that modern water (from after 
1963) has not penetrated into the unweath- 
ered clay. 
' 

In the southern basin of Lake Agassiz, 
modern meteoric precipitation has average 
values of -13 to -14 per mil (12). Late 
Pleistocene precipitation in this region 
should have had considerably lower S180 
values because of a much colder climate. 
The S180 values in ground water are un- 
likely to be altered by mineral-water reac- 
tions below 50°C (13, 14). 

MONTC ALM 

Fig. 1. (A) The maximum of extent of glacial Lake Agass~z (2) with locat~ons of aquitard f~eld sites (W). 
Additional s~tes In glacially deposited aquitards are located in southern Saskatchewan, northern W~scon- 
sin, southwestern Ontario, northern Ontarlo, and Quebec. (B) The cross section from Winnipeg, Mani- 
toba, to Grand Forks, North Dakota, shows the thickness of depos~ted clay, und'erlying t~ll, and bedrock 
under the glacial lake. 
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From the hydraulic conditions at Mont- 
calm, Emerson, and Drayton, we expect 
that late Pleistocene water is present deep 
in the clay at these sites (15). A t  Manvel, 
however, hydraulic conditions suggest that 
the original pore water has been mixed w ~ t h  
or replaced by water flowing upward from 
the underlying aquifer. 

The profiles of S1'O values at Montcalm, 
Emerson, and Drayton (Fig. 2) are essential- 
ly the same. The SIQ values in the shallow 
ground water are at or slightly below the 
average value for modern precipitation. The 
values decrease with depth to a uniform 
value of -24.5 per rnil between 20 and 30 
m. A t  both Montcalrn and Emerson, there is 
a subsequent increase in S180 in the under- 
lying till. There are no wells below 30 rn at 
Drayton. The substantial contrast between 
the zone of depleted S1% at depth and that 
at ground surface and in the underlying till 
at Montcalm and Emerson suggests that lit- 
tle displacement of pore water has occurred. 
This is consistent with the ground-water 
velocity estimates from the hydraulic data. 
Because the same depleted S1" value is 
found deep in the clay at the three sites, 
which span a distance of 60 km, we con- 
clude that the range of -24 to -25 per mil 
is characteristic of the water Impounded in 
the southern part of the Lake Agassiz basin 
at the end of the late Pleistocene. 

A t  Manvel, S180 in the shallow ground 
water is similar to meteoric water. The S1'O 
value decreases to -19.6 per rnil at depth 
and increases to about - 18 per mil near the 
interface of the till and underlying Dakota 
aquifer (Fig. 2). The S1'O values of several 
samples of Dakota aquifer water from Grand 
Forks County are - 18 per mil (16). The 
lowest S180 value measured at Manvel, 
- 19.6 per mil, is higher than the low value 

of -24.5 per mil measured at Montcalm, 
Emerson, and Drayton. Together with the 
velocity calculation, this higher value sug- 
gests that the pore water has been displaced 
bv or mixed with water from the underlvine , - 
Dakota aquifer. 

Except for one core sample, S1'O and 
S2H values of core samples from Montcalm 
and well samples from Montcalm, Manvel, 
and Drayton lie along the local meteoric 
water line (MWL) for Gimli, Manitoba 
(12), and within l o  of the global MWL 
(17) (Fig. 3) .  This indicates that there has 
been 110 significant alteration of the isoto- 
pic signature as a result of evaporation, 
mineral exchange, or invasion bv an isoto- - 
pically different water. 

The S1'O values for shallow ground wa- " 

ter, deep ground water, and average mete- 
oric precipitation compiled for other sites in 
thick late Pleistocene-age aquitards in 
northern North America (Fig. 4) show that 
the greatest difference between S1% values 
for shallow ground water and deep ground 
water occur at the Lake Agassiz sites. Shal- 
low ground water and average precipitation 
are similar in most areas. although in semi- 
arid Saskatchewan, shall'ow grouT1d water is 
somewhat enriched corn~ared with the av- 
erage annual precipitation, probably as a 
result of evapotranspiration before or during 
recharge. 

The very depleted values of -24 to -25 
oer rnil from Montcalm. Emerson. and 
Drayton are similar to values from deep 
ground water in glacial till at the Birsay site 
in southern Saskatchewan ( - 25.1 per mil; 
50°N) (18) and in a glaciolacustrine deposit 
at the New Liskeard site in northern On- 
tario (-24 per mil; 48"N) (19). 

Of these five sites, four, including New 
Liskeard, are situated in glaciolacustrine sed- 

Montcalm Emerson Drayton Manvel 
6180  (per mil) 6180  (per mil) 6180  (per mil) Eii80 (per mil) 

-20 -16 -24 -20 -16 rj 
L I  I I I I  I  I  I  I I  

/ Y 0 
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20- 20 

30- 
A 30 - 

40-- - - - - - - - 40 - 40 - 
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50- -1 50- v1992) 50- 50- 

- 

a 
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Fig. 2. The Si80 values (relative to VSMOW) of ground water sampled from monitoring wells at Montcalm, 
Drayton, and Manvel and from cores at Emerson. A reading from the Dakota aquifer is Included in the 
Manvel data. 

iments deposited at the end of the last gla- 
cial maximum; Birsay is situated in glacial 
till that was deposited in the previous glaci- 
ation. Although these sites occur at roughly 
the same latitude, they are separated by a 
distance of 2000 km. The presence of the 
same negative S180 values in thick un- 
weathered deposits ranging from Saskatche- 
wan to Ontario suggests that -24 or -25 

Fig. 3. Plot of 6180 versus 6'H for water samples 
taken from monitoring wells Installed at Drayton, 
Montcalm, and Manvel (a) and for pore water 
squeezed from clay samples at Montcalm (A). The 
Giml MWL [solid Ihne; 6'H = 7.8 6180 + 6.2 (12)] 
IS indistinguishable from the global MWL [dotted 
I~ne; 6% = 8 860 + 10 (1 7)]. 

(I1 
1-x New Liskeard 

~ - Birsay 1 
Byam Martin Ice Cap 

Varennes, Quebec I 
Sarnia, Ontario - 1  
Superior, Wisconsin I 

6180 (per mil) 

Fig. 4. Summary of S180 values (relative 90 
VSMOW) of shallow (X)  and deep ( ) ground 
water and of average precipitation (a) at field lo- 
cations In aquitards in northern North America (I, 
18, 19, 24). Numbers 1 ,  2, 3, and 4 in the Lake 
Agass~z data refer to the Montcalm, Drayton, Em- 
erson, and Manvel s~tes, respectively. The boxed 
point is from glacier ruhoff from the Byam Martln 
Ice Cap (22). 
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oer mil was the average S180 signature of " u 

melting glacial ice at the end of the late 
Ple~stocene in a zone of 48" to 50°N. 

Although the relation between air tem- 
perature and the S180 v a l ~ e  of precipitation 
is not always straightforward, the observed 
S180 values of -24 and -25 per mil yield 
paleote~nperature estimates of - 15.0" to 
- 16.4"C (20). These values fall within the 
range of estimates from paleoclimate simu- 
lations that indicate that mean annual sur- 
face air temperature in the region (north- 
central North America) increased from 
about -18°C at 12,000 years ago to about 
- 10°C at 10,000 years ago (21). A shift of 
10 per mil in the S1'O value of precipitation 
(from -24 to -25 per mil to the present 
value of - 13 to - 14 per mil) and a warming 
of 10" to 18°C gives a slope of 0.55 to 1.1 
per mil per degree Celsius, which is within 
the expected slope of S180 with temperature 
at mid- to high latitudes. Equivalent modem 
conditions of depleted S180 (-24 per mil) 
and low temperature (- 15°C) currently ex- 
ist 2500 km north of the studv area at the 
southern margin of the ~ ~ a l i  Martin Ice 
cap, Bylot Island (73"N) (22). 

These results indicate that thick, un- 
weathered clayey deposits can maintain 180 
signatures in pore water over 10,000 or 
more years because ground-water flow and 
mineral-water interaction are insignificant. 
Under the favorable hydrogeologic condi- 
tions provided by these thick aquitards, iso- 
topic signatures of deep ground water can 
be related to climatic conditions of the late 
Pleistocene. 
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to the value found in shallow ground water (-16 to 
-15 per mil in Lake Agasslz and New Llskeard; 
-17.5 per mil at Birsay). The effectlve d~ffus~on 
coeff~cients ranged from 1 x 1 0 - lo  to 5 x 10-l l 
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