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Suppression of Hyphal Formation in Candida 
albicans by Mutation of a STEl2 Homolog 

Haoping Liu, Julia Kohler, Gerald R. Fink" 

A Candida albicans gene (CPHl) was cloned that encodes a protein homologous to 
Saccharomyces cerevisiae Stel 2p, a transcription factor that is the target of the pher- 
omone response mitogen-activated protein kinase cascade. CPHl complements both the 
mating defect of stel2 haploids and the filamentous growth defect of stel2/stel2 diploids. 
Candida albicans strains without a functional CPHl gene (cphl/cphl) show suppressed 
hyphal formation on solid medium. However, cphl lcphl strains can still form hyphae in 
liquid culture and in response to serum. Thus, filamentous growth may be activated in C. 
albicans by the same signaling kinase cascade that activates Stel2p in S. cerevisiae; 
however, alternative pathways may exist in C. albicans. 

Candida albicans is the most frequently iso- 
lated fungal pathogen in humans. The abil- 
ity to switch between the yeast and filamen- 
tous form has been postulated to contribute 
to the virulence of this organism (1). Diffi- 
culties in the genetic manipulation of C .  
albicans have hindered the identification of 
factors that contribute to the dimomhic 
switch. Candida albicans has no  known sex- 
ual cvcle and is at least d i~ lo id .  Thus, it is 
difficklt to  isolate and identify mutations 
that affect pathogenicity (1 ). 

The observation that S ,  cerewisiae is also 
dimomhic has ~ermi t ted  the analvsis of the 
switch from bubding cells to filaments in a 
genetically more tractable fungus. Under 
conditions of-nitrogen starvation on solid 
medium, S.  cerewisiae diploids switch their 
growth motif from round cells to pseudohy- 
phae, which are chains of elongated cells 
that remain attached to each other (2). 
Elements of the yeast mating signal-trans- 
duction pathway [the mitogen-activated 
protein (MAP) kinase cascade] are required 
for pseudohyphal growth (3). The kinases 
Ste20p, Stellp(MEKK), and Ste7p(MEK) 
are required in haploids for the phosphoryl- 
ation of the transcription factor Stel2p, 
which stimulates the expression of mating- 
specific genes (4-6). Pseudohyphal forma- 
tion is greatly suppressed in diploids ho- 
mozygous for mutations in STE20, STEI 1, 
STE7, or STE12 (3). 

The  existence of a filamentous phase in 
S. cerewisiae provides a suitable background 
in which to clone Candida genes that en- 
hance pseudohyphal growth in S.  cerewisiae. 
A diploid S. cerewisiae strain, CGx69 (a/a 
ura3-52/ura3-52) (7), was transformed by 
electroporation with a C .  albicans genomic 
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library constructed in a high-copy num- 
ber S. cerevisiae vector, and Ura+ transfor- 
mants were selected on a medium that 
suppresses pseudohyphal formation (8). 
Nine transformants that formed pseudohy- 
phae on  this medium were isolated by 
their agar invasion phenotype and elon- 
gated cell morphology ,19). . Restriction 
analysis of the plasmids isolated from these 
nine clones indicated that they represent- 
ed two C .  albicans genes, CPHl  and CPH2 
(Candida pseudohyphal regulator). CPHl  
markedly enhanced the pseudohyphal 
growth of Saccharomyces on nitrogen star- 
vation medium (Fig. 1, A and B). 

The DNA sequence from the open read- 
ing frame of the CPHl clones showed that 
the predicted amino acids 20 to 187 of 
Cphlp  are 74% identical to residues 32 to 
200 of S. cerewisiae Stel2p and 83% identical 
to residues 27 to 194 of Kluyweromyces lactis 
Stel2p (Fig. 2) (1 0-1 2). This region con- 
tains the DNA-binding domain of Saccharo- 
myces Stel2p (13). Another stretch of eight 
residues (Cphlp residues 291 to 298) that 
are identical between Cphlp and Stel2p of 
S. cerewisiae or K,  lactis is located in the 
middle of the region required for phero- 
mone-inducible transcriptional activation 
(4, 14). CPHl complements both the defect 
in filament formation and the mating defect 
of S. cerewisiae stel 2 mutants. The stel 2/ste1 2 
diploid strains that carry the CPHl gene on 
a plasmid show restored filament formation 
(Fig. 1, C and D). The suppression of the 
Saccharomyces mating defect by Candida 
CPHl is striking because no  sexual cycle is 
known in Candida. The existence of a func- 
tional Candida homolog of the S. cerewisiae 
mating pathway component Stel2p suggests 
that C .  albicans may have an undetected 
sexual cycle. In a manner similar to K. h i s  
STE1 2, Candida CPHl complements the 
stel2 mating defect better in MATa strains 
than in MATa strains (Fig. 3), which pre- 
sumably reflects the additional requirement 
for a 1  ~ r o t e i n  to interact with S t e l 2 ~  in 

21 July 1994; accepted 26 September 1994 *To whom correspondence should be addressed. MATa strains for successful mating (12). 

SCIENCE VOL. 266 9 DECEMBER 1994 1723. 



! : - : : v V ; ; : V : :-'.--''>'- ''.•• ' ."••.'"• ' - • 

Fig. 1. Enhancement of 
pseudohyphal growth in S. 
cerevisiae by CPH1. Diploids 
of S. cerevisiae were grown 
on SLAD medium for 3 days 
at 30°C (7). (A) L5366 (a/a 
ura3-52/ura3-52) carrying a 
URA3 vector. (B) L5366 car­
rying a CPH1 URA3 plasmid 
(pHL160). (C) HLY352 (a/a 
ste12::LEU2/ste12::LEU2 
ura3-52/ura3-53 leu2::hisG/ 
leu2::hisG) carrying a URA3 
vector. (D) HLY352 carrying 
a CPH1 URA3 plasmid 
(pHL160). 

Fig. 2. Sequence com­
parison of C. albicans 
Cphlp with S. cerevi­
siae Ste12p and K. lac-
tis Ste12p. The Gen-
Bank accession number 
for CPH1 is U15152 
(27). Cph1 p was aligned 
with Ste12p of S. cerevi­
siae and K. /acf/s with 
the MEGALIGN pro­
gram (DNAstar, Madi­
son, Wisconsin) ac­
cording to the Clustal 
method (25). The region 
of greatest homology 
(Cphlp residues 20 to 
306) is shown. Identical 
residues are boxed; dashes 

Ca Cphlp 
Sc Stel2p 
Kl Stel2p 

Ca Cphlp 
Sc Stel2p 
Kl Stel2p 

Ca Cphlp 
Sc Stel2p 
Kl Stel2p 

Ca Cphlp 
Sc Stel2p 
Kl Stel2p 

Ca Cphlp 
Sc Stel2p 
Kl Stel2p 
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IVEESLRLIEDLKFFLATfRlPANWOENOVIRRYYiisMDEGFVSCVFWNNLYYIll 
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78 
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represent gaps introduced to optimize alignment. 

Fig. 3. Complementation of the ste12 mating de­
fect by CPH1. Haploid ste12 mutants, HLY633 (a 
ste12::LEU2 ura3-52 leu2::hisG) and HLY635 (a 
ste12::LEU2 ura3-52 leu2::hisG), were trans­
formed with a vector, STE12 (B2552), or CPH1 
[pHL160 (24)]. For a mating test, rectangular 
patches of the transformants grown on SC-ura 
medium were replica-plated to a fertile (Ste+) lawn 
of the opposite mating type on YPD. After 6 hours 
at 30°C, the mixture was replica-plated to YNB 
medium, on which only diploids that result from a 
mating can grow. The white patches of diploids 
indicate that mating ability was restored to the 
ste12/ste12 transformant by the plasmid. 

A CPHl disruption construct (Fig. 4A) 
was used to transform a Ura3~ C. albicans 
strain in order to replace the chromosomal 
CPHl gene with the disrupted sequence by 
homologous recombination. The disruption 
of both CPHl genes requires a multistep 
procedure (15-17). The structures of the 
CPHl/cphl and cphl/cphl disruptions were 
confirmed by both the polymerase chain re­
action (PCR) and Southern (DNA) analysis 
(Fig. 4, B and C). The cphl/cphl strains 
showed suppressed hyphal formation when 
compared with the CPHl/CPHl and CPHl/ 
cphl strains (Fig. 5) grown on two different 
solid media (18). The defect in hyphal for-

a ste12 aste12 

- • 

Vector 

STE12 

CPH1 

mation is unlikely to result from a growth 
defect, because all the strains grew with ap­
proximately equivalent doubling times. The 
only other reported gene whose function is 
required for hyphal growth in Candida is 
PHRl (16). 

Several experiments indicated that defec­
tive hyphal formation is a direct conse­
quence of loss of CPHl function: (i) Two 
independently constructed cphl/cphl strains 
showed the same defect in hyphal formation. 
(ii) Reintroduction of a wild-type CPHl 
gene by integrative transformation restored 
the ability of cphl/cphl strains to form hy-
phae (Fig. 5D). Five integrative transfor-

B 

hisG URA3 hisG 

cphlrhisG * • 

CPH1--

G 1 2 3 

cph1::hisG URA3 hisG +* 

cph1::hisG * -

CPH1 *~ | 

Fig. 4. Disruption of the CPH1 gene in C. albicans. 
(A) The disruption construct contains a hisG URA3 
hisG insertion at the Nar I site in the DNA-binding 
domain in CPH1 coding sequence [pHL156 (24)]. 
(B) Identification of Candida cphl mutants by PCR 
analysis. Lane 1, CAI4, CPH1/CPH1; Lane 2, 
JKC16, CPH1/cph1::hisG; Lane 3, JKC18, 
cph1::hisG/cph1::hisG. The PCR primers (P33,5'-
CGACCTTCCCCCCACACTCGTTCCC; and P34, 
5'-TGGAATCATGCCAATCATAGCACC) amplify 
from a Xho I site and from the 3' end of CPH1 (A). 
The primers are outside of the cphl::hisGURA3 
hisG transforming DNA region. (C) Southern anal­
ysis with a CPH1 fragment located between P33 
and P34 (a Xho l-Sac I fragment of the CPH1 insert 
from pHL153) as the probe. The DNA digested with 
Kpn I was from the following strains: Lane 1, CAW, 
CPH1/CPH1; lane 2, JKC17, CPHVcpMr.hisG 
URA3hisG; lane 3, JKC16, CPH1/cph1::hisG; lane 
4, JKC19, cph1::hisG/cph1::hisGURA3hisG; Lane 
5, JKC18, cphl::hisG/cph1 ::hisG. For more details 
on the strain constructions, see (26). 

mants were obtained in one transformation 
experiment, all of which contained a func­
tional copy of CPHl and formed hyphae 
(19). 

Although cphl/cphl strains are defective 
in hyphal formation on solid medium, no 
difference was observed between these 
strains and CPHl/CPHl strains for either 
hyphal formation upon growth in liquid 
Lee's medium or for serum-induced germ 
tube formation (20, 21). Thus, there must 
exist CPHl -independent pathways capable 
of signaling the shift from the yeast to the 
hyphal form that are induced under these 
diverse conditions. These data suggest the 
existence of multiple pathways for the induc­
tion of hyphal growth in Candida. 

Comparisons between S. cerevisiae and C. 
albicans must take into account the differenc­
es between the potential developmental alter­
natives available to each organism. Both grow 
as similarly shaped yeast forms; however, the 
filamentous forms differ markedly. Saccharo-
myces cerevisiae forms only pseudohyphae, 
which are filaments comprised of chains of 
distinct cells, whereas C. albicans forms both 
pseudohyphae and true hyphae, which are 

1724 SCIENCE • VOL. 266 • 9 DECEMBER 1994 



Fia. 5. Su~~ression of hv~hal arowth 5 davs 7 davs - , , , >  " 
on sol~d medlum by mutation of the 
CPHl  gene Strains were grown on 
sol~d Sp~der medlum at a denslty 
of -100 colon~es per plate and A 
photographed after growth for 5 
or 7 davs at 37OC (78). (A) CPH1/ 
CPH l  ( ~ ~ 5 3 1 4 ,  ~ r a +  ancestor of 
CA14) (15). (B) CPHl/cphl  (JKC17). 
(C) cphl/cph7 (JKC19). (D) 
cph l/cph 1::CPHI (JKC28). All the 
stralns shown are Ura3+, because 
Ura3- strains show defects in hy- 
phal formation. Scale bars in (D) rep- 
resent 0.5 cm. The CPHI/CPHI 
strain (A) developed observable hy- 
~ h a e  after 3 davs of arowth and ex- , - 
tensive hyphae after 5 days. The 
c ~ h l / c ~ h 7  deletion strain (c) & a A k  
showed no observable hyphae after 
3 days and markedly reduced hy- 
phal formation after 5 days. Al- 
though many of the cphl /cphl  col- 
onies showed some hyphae after 7 
days, these were shorter and much D 
less abundant than those of strains 
containing a functional CPHl  gene. 
The heterozygous CPHl/cph7 - 
strain (B) showed a slight reduction 
in the extent of hyphal formation 
compared with CPHl/CPH1 (A). The cphI/cphl strains transformed with CPHl  regained the ability to 
form hyphae (D). These transformants were unstable and segregated colonies with suppressed hyphal 
growth similar to those in (C) (79). 

long multicellular tubes with no constric- 
tions at septa between the cells. The organ- 
isms also differ with respect to the external 
signals that induce the yeast cells to form 
filaments: Saccharomyces forms pseudohy- 
phae in response to nitrogen starvation, 
whereas C a d d a  forms only a few small 
pseudohyphae when starved for nitrogen but 
forms florid hyphae on many different rich 
media. Other factors that induce the dimor- 
phic switch in C a d d a  include pH, temper- 
ature, and carbon source (21,22). Moreover, 
serum, which has no effect on Saccharomyces, 
induces Candida yeast cells to develop a germ 
tube and, ultimately, hyphae. The differenc- 
es in the developmental repertoires available 
to these two organisms may be a conse- 
quence of adaptations to life in different 
habitats. 

In spite of these differences between Can- 
d i d ~  and Saccharomyces, the observation that 
the StelZplCphlp ;ranscription factor medi- 
ates filament formation in both organisms 
suggests that the same kinase cascade may 
signal filamentous growth in both organisms. 
This kinase cascade may be a general con- 
duit for signals that induce the yeast-to- 

that can transmit this signal. 
Note added in proof: After submission of 

this manuscript, Malathi et al. (27) reported 
the cloning of a C .  albicans gene APRPl 
whose protein sequence is identical to that 
of Cphlp. 
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obtained and -40% contained genomic inserts. Xho lSac I fragment from pHL156 (24), using a mod- 

maydis, by mutations in the Ste7p/MEK ho- 9. ura+ transformants of Saccharomyces were select- ified Saccharomyces lithium acetate method [D. Gi- 
moloe Fuz'l~ (23). Our results with the cbhll ed on SC-ura+ 1 M sorbitol. amedium that suppress- etz. A. S. Jean, R. A. Woods, R. H. Schiestl, Nucleic 

LZ . .  , . . 
cphl mutant suggest that there may be more es pseudohyphal formation and invasion.' 'plates Acids Res. 20, 1425 (1992)l. Uraf transformants 

containing transformants were washed with water to were grown on 5-fluorwrotic acid-containing medi- 
than One that induces forma- remove noninvasive colonies. Approximately 200 of um to select for Ura- segregants that had lost URA3 
tion in Candida and more than one pathway the lo5 transformants remained, and nine of these by recombination between the tandem hisG repeats, 
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mTECHNiCAL COMMENTS 

The Entropic Cost of Binding Water to Proteins 

I n  a recent Perspective (1) about the en- 
tropic cost of binding water molecules to 
proteins and other macromolecules, Jack D. 
Dunitz uses thermodynamic data on  water, 
anhydrous salts and their hydrates to set 
limits on the entropy decrease for transfer- 
ring a water molecule from liquid water to 
the macromolecule. The limits set were 0 to 
7 cal mol-' K-' with larger entropy de- 
creases corresponding to more tightly held 
waters. Dunitz also states that thermody- 
namic data from which these entropy 
changes can be directly calculated are 
"nonexistent." Such data do exist and cal- 
culations of these entropy changes have 
been reported in the literature. 

Data for calculating dS/dn, the entropy 
change occuring when a mole of water is 
transferred from liquid water to solid protein, 
as a function of n ,  the moles of water bound 
per mole of protein, can be obtained from 
measurements of sorption isotherms of water 
vapor on solid proteins at several tempera- 
tures (2). Isotherms of water vapor on pro- 
teins generally exhibit hysteresis, but it has 
been shown that correct entropy calcula- 
tions can be made even in the absence of 
isotherm reversibility -(3). For example, cal- 
culations of dSIdn values for water bound to 

data from the literature (4). The variation of 
such entropies with n has also been discussed 
(5). Values of -dS/dn for ovalbumin varied 
from approximately 0 to 12 cal mol-' K-' 
for absorption isotherms and from approxi- 
matelyo to 20 cal mol-' K-' for desorption 
isotherms. Larger entropy decreases were 
eenerallv seen at lower values of n. The fact 
;hat soke of these entropy decreases are 
greater than the estimated limit of 7 cal 
molp' K-' suggests that the binding of more 
tightly held waters to a protein can cause a 
decrease in protein entropy as well as a de- 
crease in water entropy. Thus, uptake of 
water could lead to fewer, or more ordered 
protein conformations, or both. 

William P. Bryan 
Department of Biochemistry and 

Molecular Biology, 
Indiana University School of Medicine, 

Indianapolis, IN 46202, U S A  
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Dating Hominid Sites in Indonesia 

C. C. Swisher et al. ( 1 )  recently published 
two new dates for hominid sites in Java based 
on 40Ar/39Ar laser-incremental heating anal- 
yses. They propose mean-weighted ages of 
1.81 i 0.04 million years ago (Ma) for the 
Mojokerto and 1.66 i 0.04 Ma for the San- 
giran site. On the basis of these dates they 
draw far-reaching conclusions about the ear- 
ly migration of the ancestor of Homo erectus 
out of Africa as well as an explanation for 
the absence of the Acheulean stone tool 
culture in Asia. These new 40Ar/39Ar ages 
are based on homblende separated from 
pumice recovered at Sangiran and Mojo- 

kerto. However, the geological context of 
these homblende sam~les is not clear. and 
the new ages are contradicted by a wide 
ranee of established data. u 

A discrepancy of about 0.9 Ma between 
the 40Ar/39Ar ages (1.81 and 1.66 Ma) given 
by Swisher et al. and the existing magne- 
tostratigraphy [which is based on detailed 
sections of Sangiran (0.97 to 0.73 Ma) and 
Mojokerto (0.97 Ma) reported by Hyodo et 
al. (2) in 19931 is not adequately explained 
by Swisher et al. The Hyodo et al. (2) mag- 
netostratigraphy, based on a solid litho- 
stratigraphy (3), corroborates perfectly with 

a series of fission track ages (4) indicating 
dates all less than 1.0 Ma. In this light, the 
geological context of samples which yielded 
the older dates must be critically reviewed. 
A t  the Mojokerto site the pumice was taken 
from a conglomeratic volcanic sandstone, 
which invites the interpretation that the 
pumice was likely reworked and redeposited. 
Swisher et al. state, about the Sangiran sam- 
ple, that the pumice was handpicked from a 
volcanic pumice-rich layer. There is inade- 
quate information about the lithostratigra- 
phy and exact stratigraphic position of this 
sample in the Sangiran section and about 
the relationship of the volcanic pumice- 
rich layer to the high number of well- 
described and recognizable tuff layers in 
the Sangiran area of. whlch some have 
fission track data (3). 

There is agreement between the normal 
polarity found at the Mojokerto site by 
Swisher et al. (1) and that reported by Hyodo 
et al. (2) but, on the basis of the 40A$9Ar 
age of 1.8 i 0.04, Swisher et al. place this 
site in the Olduvai event. O n  the basis of the 
paleomagnetic properties of the section in 
Sangiran as well as in Mojokerto, Hyodo et 
al. (2) demonstrate that the normal polarity 
of these sites represent the Jaramillo event, 
which suggests an age of approximately 0.97 
Ma. We  see no  reason to doubt this paleo- 
magnetic sequence, which is also corroborat- 
ed by fission track ages (4). In addition to 
the discrepancy of the new 40Ar/39Ar ages 
compared with the paleomagnetic and fis- 
sion track data, the biostratigraphy of San- 
giran and Mojokerto (5) contradict the new- 
ly proposed ages for these sites. Trinil, which 
contains the type specimen of Homo erectus 
discovered by Dubois (6) and is character- 
ized by Stegodon, is widely considered to 
have an age of about 1 Ma. The Kedung 
Brubus fauna, characterized by new arrivals 
of the Asiatic mainland, like Elephas, to 
which the Mojokerto fauna belongs, is 
younger (5) than the Trinil fauna based on 
all key biostratigraphic markers (5). 

The  40Ar/39Ar dates of Swisher et al. 
may themselves be "technically correct," 
but until their geological context is estab- 
lished, it is premature to attach such far 
reaching conclusions to these new age esti- 
mates for the hominid of Java. 
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