
RNA15 can bind to poly(U) ribopolymers 
(20), which suggests that the generally U-
rich RNA sequences important for 3 ' pro­
cessing in yeast (4, 21) may be recognized 
by this protein. The finding that this puta­
tive RNA-binding protein is a component 
of CF I may thus help to elucidate the 
sequence requirements in yeast 3'-end pro­
cessing. It is worth noting in this context 
that the mammalian counterpart of yeast 
CF I, cleavage and polyadenylation speci­
ficity factor (CPSF), is a sequence-specific 
RNA-binding factor consisting of multiple 
polypeptides (I, 22). 
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which leads to goblet cell hyperplasia, in­
testinal obstruction, and perforation (1). To 
correct the lethal intestinal abnormalities 
in a group of CF mice, we used the rat 
intestinal fatty acid-binding protein 
(FABP) gene promoter (2) to direct expres­
sion of the wild-type hCFTR complemen­
tary DNA (cDNA) to the intestinal epithe­
lial cells of these mice (3). A chimeric 
FABP-hCFTR gene construct was microin-
jected into fertilized oocytes, producing 
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transmembrane conductance regulator (CFTR). A potential animal model of CF, the 
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strategy for correcting physiologic defects in patients with CF. 
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transgenic mice from both heterozygotic Southern (DNA) blot analysis in founder fragment analysis (4). The transgenic mice 
CFTR+/- and wild-type FVB/N mice. The mice and their offspring, and the integrity were bred to produce CFTR-I- mouse lines 
FABP-hCFTR transgene was detected by of the DNA was confirmed by restriction bearing the FABP-hCFTR transgene. 

Fig. 1. The RT-PCR analysis of hCFTR mRNA. Reverse transcription was done on total tissue 
RNA with an oligo(dT) primer. Beta-actin cDNA was used as a control (cont). PCR of the 
hCFTR fragment was done with primers 5'-TAAACCTACCAAGTCAACCA-3' and 5'-AAT- 
TCCATGAGCAAATGTC-3'. Sizes of the PCR products are shown on the right. (A) Expres- 
sion of hCFTR mRNA in the intestines of transgenic mice from six transgenic lines. Lane 1 
shows a positive control: lung (Lu) cDNA from the J4 transgenic mouse bearing a lung- 
specific SP-GhCFTR construct (10). Lane 2 shows intestinal (In) cDNA from a transgene- 
negative littermate. The hCFTR mRNA was detected in the intestines of all six transgenic lines 
tested (lanes 4,6,8, 10, 12, and 14). It was also detected in the lungs (lanes 3,5, 1 1, and 13) 
but was not in the lungs of lines E9 or F16 (lanes 7 and 9). (6) Distribution of hCFTR mRNA in 
tissues from transgenic line A2. The h C m  mRNA was detected in large amounts in the 
duodenum, jejunum, and ileum (lanes 9 to 1 I),  in smaller amounts in the cecum and colon 
(lanes 12 and 13), and in varying amounts in the brain, lung, kidney, pancreas, and stomach 
(lanes 1, 2, 6, 7, and 8, respectively). Gels were stained with ethidium bromide. 

Fig. 2. In situ hybridization analysis of hCFTR mRNA in the adult 
mouse intestine. Small and large intestines from wild-type and line 
A2 mice were fixed in 4% paraformaldehyde. Cryostat sections 
(1 0 pm) from the ileum (A, C, E, and G) and colon (6, D, E, and H) 
were hybridized overnight at 42°C with P5S]UTP-labeled hCRR 
sense and antisense riboprobes (10). The sections were then 
washed stringently, treated with ribonuclease A, and exposed to 
llford K5 emulsion for 7 to 10 days at 4OC. Sections were photo- 
graphed under dark-field illumination. A hybridization signal was 
detected by antisense riboprobe in epithelial cells of the ileum (A 
and E) and colon (B and F) of FABP-hCFTR+/- mice from both 
CFTR+/+ (A and 6) and CFTR-/- (E and F) backgrounds. No 
signal was detected in the ileum or colon of CFTR-I- mice (G and 
H). The h C m  ribroprobe hybridized weakly with mCFTR mRNA 
in the crypt epithelial cells of the ileum and colon of C m + ' +  mice 
(C and D). Scale bar, 500 pm. 
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Human CFTR mRNA was readily detect- 
ed by reverse transcription-polymerase chain 
reaction (RT-PCR) in the small intestine of 
six distinct FABP-hCFTR mouse lines (Fig. 
1A). In several mouse lines, the hCFTR 
mRNA was expressed in the intestine and 
was absent or present in barely detectable 
amounts in the lung or nasal epithelium. In 
lines A2 and E9, hCFTR mRNA was most 
abundant in the ileum, jejunum, and duode- 
num and was less abundant in the cecum and 
colon (Fig. 1B). The hCFTR mRNA was 
not detected in the lungs of mice of the A2 
or E9 lines by Northern (RNA) blot analysis 
but was detectable, albeit in small amounts, 
by RT-PCR in A2 but not E9 mice. Founder 
lines (A2, E9, and 125) were bred to 
CFTR+/- mice, which were then bred to 
produce homozygous CFTR-I- mice ex- 
pressing the hCFTR mRNA. FABP- 

hCFTR+I-CFTR-I- mice from the A2 
and E9 lines routinely survived weaning and 
showed prolonged survival (5). In contrast, 
50 matings of CFTR+I- mice from both 
WB/N and C57BL16 backgrounds resulted 
in survival of less than 5% of CFTR-I- 
mice. Likewise, only 1 of 23 CFTR-I- mice 
derived from matings of WB/N CFTR+I- 
and CFTR+IP mice survived. 

In situ hybridization demonstrated the 
presence of hCFTR mRNA in the intesti- 
nal epithelium of FABP-hCFTR mice from 
both CFTR+/+ and CFTR-I- backgrounds 
(Fig. 2). The hCFTR mRNA was most 
abundant in the ileum, jejunum, and duo- 
denum and was less abundant in the colon 
and cecum. It was expressed in the epithe- 
lial cells of the intestinal villi but not in the 
crypts of Lieberkuhn. The distribution of 
hCFTR mRNA was distinct from that of 
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the endogenous murine CFTR mRNA, 
which was present in large amounts in the 
colon, ileum, and jejunum in wt mice. In 
these tissues, CFTR was expressed most 
prominently in the crypts of Lieberkuhn, 
decreased in abundance in the more mature 
cells along the intestinal villi, and was rel- 
atively excluded from the villous tips (6 ) .  
The hCFTR mRNA was less abundant in 
the colon of the transgenic mice and, in the 
small intestine, was excluded from crypt 
cells. 

Morphologic changes in the intestinal 
epithelium of the wild-type (nontransgenic) 
and CFTR-I- and FABP-hCFTR+IP- 
CFTR-I- bitransgenic mice were further as- 
sessed by periodic acidSchiff (PAS) stain- 
ing (Fig. 3). Goblet cell hyperplasia, a prom- 
inent feature of the CFTR-/- mice, was 
entirely corrected in the ileum of lines A2 
and E9 FABP-hCFTR+/--CFTRP1- mice. 
However, the disruption of crypt epithelial 
cell organization and goblet cell hyperplasia 
seen in the colon of the CFTR-I- mice was 
not fully corrected in the FABP-hCFTR+I-- 
CFTR-1- mice examined (three from line 
A2 and one from line E9), perhaps because 
of inadequate expression of hCFTR mRNA. 
The coiled "wormlike" cecum that was typ- 
ically observed in the CFTR-I- mice was 
not observed in the FABP-hCFTR+I-- 
CFTR-I- mice examined. 

Short-circuit current (I,,) measurements 
were made from the intestine of CFTR-I-, 
bitransgenic FABP-hCFTR+/--CFTRP1-, 
and wt mice (Fig. 4). Forskolin-induced I, 
(rate of CAMP-stimulated C1- secretion) 
was absent in ileal, jejunal, and colonic 
segments from CFTR-I- mice (7); phloriz- 
in-sensitive Na+-dependent glucose absorp- 
tion was present in the jejunum and ileum. 
In the small intestines of the FABP- 
hCFTR+/-CFTR-I- mice (Fig. 4A), elec- 
trogenic C1- secretion was restored. Fors- 
kolin increased the I, across both jejunum 
and ileum of the bitransgenic animals (Fig. 
4B). Addition of glucose to the mucosal 
solution further increased the I,,, and this 
increase was phlorizin-sensitive. On aver- 
age, these responses were greater in the 
ileum and jejunum of wt animals. 

A forskolin-induced electrogenic C1- 
secretory response was observed in the wild- 
type colon but not in the colon of FABP- 
hCFTR+/-CFTR-I- mice. This correlat- 
ed with the histopathologic changes, which 
persisted despite upstream expression of 
hCFTR mRNA and restoration of CAMP- 
stimulated C1- secretory activity in the 
small intestine. Although the amount of 
hCFTR mRNA expression in the cecum of 
bitransgenics was as small as that in the 
colon, the cecum developed normally and 
did not exhibit the atrophy or irregular 
shape that was typical of CFTR-I- mice. 
Correction of the goblet cell hyperplasia in 
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the ileum demonstrates the importance of 
CFTR expression and C 1  secretion in the 
pathogenesis of the lethal obstructive phe- 
notype in the small intestines of CFTR-I- 
mice. Our data suggest that the small 
amount of hCFTR mRNA in the colonic 
epithelium was not sufficient to fully cor- 
rect the transDort and histolocric abnormal- - 
ities in the colon of the CF mouse. In 
contrast, normal cecal development may 
depend more on luminal factors than on its 
CFTR-dependent ion transport functions. 

The principal secretory activity of the 
small and large intestines resides in the 
undifferentiated cells of the crypts of 
Lieberkuhn (8), which correlates with the 
site of endogenous CFTR expression (6). 
Several features of the transport responses 
observed in the bitransgenic animals are 
consistent with expression of CFTR mRNA 
in the more differentiated villus absorptive 
cells. First, the forskolin-induced AI,, was 
smaller than the wild-type response, which 
suggests that the spatially restricted expres- 
sion of hCFTR mRNA does not quantita- 
tively correct the C 1  secretory response. 
Second, bumetanide inhibited -60% of the 
forskolin-induced AI,, in wild-type intes- 
tine but only -30% of the AI,, in bitrans- 
genic animals, which suggests that the bu- 
metanide-sensitive Na-K-2Cl cotransporter 
may not be the primary mechanism where- 
by C 1  enters cells that express hCFTR. 
Third, glucose-stimulated ISC was smaller in 
the bitransgenic animals. Glucose was add- 

ed after forskolin, which would increase the 
apical C1- conductance, depolarize the api- 
cal membrane potential, and thereby reduce 
the driving force for Na-dependent glucose 
entry into villus absorptive cells. Thus, the 
features of the transport assays are consis- 
tent with a greater amount of hCFTR ex- 
pression in villus than in crypt cells. Nev- 
ertheless, hCFTR mRNA and the CI- se- 
cretion rate that it supports are apparently 
sufficient to prevent intestinal obstruction. 

Patients with CF suffer from a varietv of 
medical complications, including severe iul-  
monary infections and gastrointestinal disor- 
ders that account for the increased morbidity 
and mortality associated with the disease (9). 
Meconium ileus commonly affects 10 to 20% 
of newborn human infants with CF and is 
caused bv insuissated intestinal contents that , L 

cause obstruction or perforation of the bowel 
in utero or postnatally. It is encouraging that 
the lethal phenotype associated with the 
lack of the CFTR gene in the small intestine - 
can be fully corrected by transfer of the 
hCFTR cDNA in a tissue-selective manner 
and that correction can be achieved even 
though the pattern of FABP promoter-driv- 
en expression differs from that of endoge- 
nous CFTR. These results provide further 
support for efforts to treat CF by gene ther- 
apy. The FABP-hCFTR+Ip-CFTRpl- bi- 
transgenic mice will be useful in determining 
the abundance and distribution of CFTR 
expression that are required to correct the 
physiologicak and histologic abnormalities in 

Fig. 4. (A) The I,, recordings from A 
ileal tissues. Sequential additions 
of 5 pM forskolin (FOR, both solu- 
tions), I00 pM bumetanide (BUM, 
serosal), 5 mM glucose (GLU, mu- CFTRI- 
cosal), and 200 pM phlorizin (PHL, 
mucosal) were as shown. (6) 
Mean Al,, responses from jejunal 
and ileal tissues from FABP- 
hCFTRf/--CFTR-/- (n = 3; open 
bars) and wild-type (n = 5; solid FABP-hCFTwl-- 

bars) mice (1 1). The bars represent CFTR1-) I rn FOR BUM GLU PHL 

the mean I SE of three 
to five tissue segments per mouse. 
The A/,, represents the maximal 
response to addition of forskolin, 
bumetanide, glucose, and phlorizin. 

Wild-type 0 I 0 IOOVAL 
FOR BUM GLU PHL 2 min 

200 I Ileum 

-150~ I I 1 I I 1-150 
FOR BUM GLU PHL FOR BUM GLU PHL 

the intestine of the CF mouse and will pro- 
vide a more robust model to assess the effects 
of the null CF mutation on the respiratory 
tract. 
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