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different substrates must be able to ap- 
proach the top face of the corrin ring, the 
domain protecting the top face probably 
moves out of the way. As with many pro- 
teins of this complexity, the static snap- 
shot that a crystal provides is only the 
starting point for understanding the com- 
plex reorganization that may occur during 
catalysis. 

The third cofactor, S-adenosylmethio- 
nine, required catalytically for methionine 
biosynthesis, regenerates the active form of 
methionine synthase when the cob(1)al- 
amin form of the protein is aberrantly oxi- 
dized to cob(I1)alamin (see figure). In the 
test tube, this reaction occurs every 100 to 
2000 turnovers (8). Regeneration of methyl- 
cobalamin from the inactive cob(I1)alamin 
requires S-adenosylmethionine and an  
electron source, flavodoxin (10). The pro- 
posed mechanism of this reactivation reac- 
tion is intriguing for several reasons. First, 
the reduction of cob(I1)alamin to cob(1)al- 
amin, if it is on  the pathway to methyl- 
cobalamin formation, is thermodynamically 
unfavorable. It has been proposed that this 
reaction is made favorable by its coupling 
to the methylation process via the most 
reactive of the methylating agents, S-ade- 
nosylmethionine (1 1). Additionally, there 
are at least two other proteins-the anaero- 
bic E.  coli ribonucleotide reductase and 
the anaerobic pyruvate formate lyase-that 
also use S-adenosylmethionine and a flavo- 
doxin to generate or regenerate the active 
form of their respective proteins (12, 13). 
Whether these systems have mechanistic or 
regulatory commonalities, involving one- 
electron reductive cleavage of S-adenosyl- 

methionine, remains to be determined. 
What is especially noteworthy about 

methionine synthase is that its cobalamin 
can shuttle between the Co(I1) and Co(II1) 
oxidation states as well as the Co(II1) and 
Co(1) oxidation states (see figure). Its abil- 
ity to use cob(1I)alamin might in fact pro- 
vide a mechanistic link to the second class 
of BIZ-requiring enzymes, those that have a 
5'-deoxyadenosyl group in place of the 
methyl group as an axial ligand. These en- 
zymes use cob(I1)alamin as the catalytically 
active form of the cofactor and are in- 
volved in unusual rearraneement reactions 

u 

in which the cobalamin shuttles between 
the Co(I1) and Co(II1) oxidation states (3). 
This linkage is supported by recent se- 
quence alignments of methionine synthase 
with' the two adenosylcobalamin-requiring 
mutases (methvlmalonvlCoA mutase and 
glutamat; mutase) which, in conjunction 
with the methionine svnthase structure. 
suggest a common ~ i s ' ~ ~ ' b i n d i n g  motif fo; 
the sixth axial lieand (DxHxxG) and a 
conserved dimeth;lbenzimidazole 'binding 
pocket (SxL, G G )  (7, 8, 14). One might 
have thought that the mechanistic prob- 
lems associated with heterolysis of the car- 
bon-cobalt bond in methionine synthase 
and homolysis of the carbon-cobalt bond in 
the mutases would have required different 
binding strategies for each cofactor. 

The  structure of a BIZ-requiring enzyme 
has long been sought. It has been well 
worth the wait. New mechanistic ideas 
have been put forth by Drennan and co- 
workers that can now be tested experimen- 
tally in both the methylcobalamin- and 
adenosylcobalamin-requiring enzyme sys- 

tems. Is the sixth axial lieand of the cobal- 
u 

amin really a histidine in some or all 
adenosylcobalamin-requiring enzymes? Why 
would nature have chosen to replace the 
bulky dimethylbenzimidazole ligand, thought 
to assist carbon-cobalt bond cleavage, with 
a less bulkv imidazole lieand? Does defor- 
mation of 'the corrin ring by mechanical 
stress accelerate the rate of carbon-cobalt 
bond cleavage? The  ability to manipulate 
protein function in conjunction with struc- 
tural information should allow unraveling 
of the chemical mechanisms at a level not 
dreamed of 10 years ago. 
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