
ate inteerin-soecific signals, such as the en- " & " ,  

hanced growth response to insulin. A 190- 
kD protein that associates with av integrins 
in platelet-derived growth factor (PDGF)- 
stimulated cells (21) may serve a similar 
function in linking the PDGF pathway to 
specific integrins. The signal transduction 
oathwavs of other growth factor and cell 
adhesion receptors aye likely to be integrat- 
ed by related mechanisms. 
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Exocytosis in Spermatozoa in Response to 
Progesterone and Zona Pellucida 

Eduardo R. S. Roldan," Tetsuma Murase, Qi-Xian Shi 

Exocytosis in mammalian spermatozoa (the acrosome reaction) is a process essential for 
fertilization. Both progesterone and zona pellucida induce exocytosis in spermatozoa, 
which may encounter both during penetration of the oocyte's vestments. When mouse 
spermatozoa were exposed first to progesterone and then to zona pellucida, exocytosis 
was enhanced to a greater degree than that seen when the agonists were presented 
together or in the inverse order, which suggests that the steroid exerts a priming effect. 
Progesterone similarly primed the generation of intracellular messengers evoked by zona 
pellucida. The effects triggered by progesterone were mimicked by y-aminobutyric acid 
(GABA) and were blocked by bicuculline, which indicates that the steroid acts on a GABA, 
receptor. 

A t  fertilization, the spermatozoon under- 
goes exocytosis in response to an oocyte- 
derived signal or signals (1). However, two 
conflicting views exist regarding the agonist 
responsible for triggering exocytosis. The 
generally accepted view is that, after tra- 
versing the cumulus oophorus, the sperma- 
tozoon is stimulated by the zona pellucida 
(ZP) ( I ) ,  and exposure to ZP leads to ty- 
rosine phosphorylation of p95 (2) and acti- 
vation of a guanosine triphosphate (GTP)- 
binding protein (G,  class) (3). However, 
targets for these transducine mechanisms 

u " 

have not been identified. A n  alternative 
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view states that progesterone, trapped in or 
produced by the cumulus oophorus, can also 
initiate exocytosis (4). Progesterone action 
is specific (5-7), is mediated by a surface 
receptor (8), and also leads to phosphoryla- 
tion of p95 (9);  G protein activation, how- 
ever, does not take place (10). We  tested 
whether these agonists interact at an early 
stage during exocytosis and examined 
which messengers are elicited by progester- 
one or ZP and whether these agonists acti- 
vate different pathways for the generation 
of such messengers. 

Mouse spermatozoa undergo exocytosis 
of the acrosome when exposed to ZP (Fig. 
1 )  (1). Mouse spermatozoa capacitated in 
vitro (11) also undergo exocytosis when 
exposed to progesterone (Fig. 1 )  (1 2) .  To  
investigate how the actions of these ago- 
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Fig. 1. Exocytosis stimulated by progesterone (P) 
and zona pellucida (ZP) in mouse spermatozoa. 
Spermatozoa capacitated in vitro were stimulated 
for 15 min with P or ZP, and acrosomal exocytosis 
was monitored as described (I I). Results are 
means t SEM (n = 3). 

nists are mediated, we first quantified 
changes in the total mass of diacylglycerol 
(DAG) (1 I ) ,  the messenger presumed to 
play a central role in sperm exocytosis (1 3 ,  
14). Stimulation with either progesterone 
or ZP triggered considerable formation of 
DAG (Table 1 )  (12). 

DAG can be generated by several routes. 
To  test whether phosphoinositidase C-me- 
diated polyphosphoinositide hydrolysis (15) 
is a source of DAG, spermatozoa were la- 
beled with [32P]orthophosphate (P,) and 
then stimulated with agonists (1 1) .  Treat- 
ment with progesterone or ZP led to 
hydrolysis of phosphatidylinositol-4,5-bis- 
phosphate (PIP,) (Table 1)  and phosphati- 
dylinositol +phosphate (PIP) (1 6). T o  ex- 
plore whether phospholipase C (PLC) or 
the phospholipase D (PLD)-phosphatidate- 
phosphohydrolase pathway are additional 
mechanisms of DAG generation (17), the 
phosphatidylcholine (PC) pool was labeled 
with [3H]alkyl-lysoPC, and changes in me- 

tabolites after stimulation were followed 
(1 1) .  Treatment with progesterone or ZP 
resulted in a rise in alkyl-diglyceride (Table 
1). However, no rise in alkyl-phosphatidate 
was noticed (Table I ) ,  which suggests ei- 
ther lack of PLD activation or no  phospho- 
rylation of alkyl-diglyceride. To  discrimi- 
nate between these options, spermatozoa 
were meincubated for 5 min with 1% eth- 
anol (v/v) and then treated with progester- 
one or ZP. Formation of a lkv l -~hos~hat i -  

, A  A 

dylethanol was not seen after these treat- 
ments (Table I ) ,  which suggests an  absence 
of PLD activation (generation of phosphati- 
dylethanol is an unequivocal indication of 
PLD activity) (18). It follows that the gen- 
eration of DAG evoked by progesterone 
and ZP occurs via similar pathways, involv- 
ing phosphoinositidase C and PLC. Because 
the mass of phosphoinositides in cell mem- 
branes is very small, most DAG is likely to 
be eenerated bv PLC. This is verv different 
from the mechanisms of DAG generation 
operating in sea urchin sperm, where PLD- 
phosphatidate-phosphohydrolase represents 
the main pathway and PLC activity is not 
detectable (19), and it suggests that inver- 
tebrate spermatozoa may not be adequate 
models for mammalian sperm function. 

Acrosomal exocytosis relies on internal- 
ization of extracellular Ca2+. It is not clear, 
however, which processes in the sequence 
leading to membrane fusion take dace  be- - 
fore and which after the rise in intracellular 
Ca2+ that is triggered by progesterone (5, 
20) or ZP (21). It has been hypothesized 
that generation of DAG takes place after 
CaZ+ influx, which is contrary to the situ- 
ation seen in many somatic cells, and that 
such influx could occur via Ca2+ channels 
(14). Five results confirmed this hypothesis 
(Table 2). First, mouse spermatozoa stimu- 
lated with the Ca2+ ionophore A23187 (to 
provoke Ca2+ entry) experienced a rise in 
DAG. Second, when capacitated spermato- 

Table 1. Lipid changes in spermatozoa stimulated with progesterone (P) or zona pellucida (ZP). Mouse 
spermatozoa were capacitated in vitro in the absence or presence of a label (1 50 p,Ci of [32P]P, per 
milliliter or 2 p,Ci of [3H]alkyl-lysoPC per milliliter), washed, and exposed for various times to 15 p,M P 
or 1 ZP per microliter or solvent controls; lipids were then extracted, separated, and quantified (I I). 
For measurements of [3H]alkyl-phosphatidylethanol ([3H]alkyl-PEt), 1 % ethanol (v/v) was added 5 min 
before stimulation (I I ,  18). Treatment times shown were optima for detection of maximal changes in 
each metabolite, as determined from previous time-course studies, Results are means t SEM (n = 3). 

Time 
Treatment 

Metabolite (mi n) Control P ZP 

DAG mass* 2.5 1.77 t 0.1 1 3.61 t 0.15$ 3.09 t 0.08$ 
[32P]PlP2t 5 27,030 -t 2,400 14,866 t 1 , I  06$ 15,200 2 1,064$ 
[3H]alkyl-diglyceridet 5 6,644 t 250 7,973 2 298$ 7,774 t 398$ 

15 6,754 t 213 7,840 t 332$ 6,910 t 358 
[3H]alkyl-phosphatidatet 5 4,258 t 180 4,308 2 298 3,947 t 296 

15 4,194 ? 207 3,800 t 325 3,819 2 308 
[3H]alkyl-PEtt 5 3,890 t 158 4,068 2 208 3,699 t 196 

15 3,954 t 171 4,106 t 225 3,972 t 182 

*Measured in micrograms per lo9 cells. tMeasured in cpm per 1 O8 cells $Different from control, P < 0.001. 

zoa were suspended in a medium with little 
extracellular Ca2+ available for influx (no 
Ca2+ added; residual Ca2+ -25 FM) (22) 
and were stimulated with progesterone or 
ZP, generation of DAG was less than that 
seen in medium containing millimolar 
Ca2+. Third, if the residual Ca2+ was che- 
lated with EGTA before stimulation, DAG 
formation was also low. Four, if capacitated 
spermatozoa in medium with millimolar 
CaZ+ were stimulated with progesterone or 
ZP in the presence of La3+, a Ca2+ channel 
blocker, DAG formation was reduced. Five, 
when capacitated spermatozoa were ex- 
posed to the Ca2+ channel agonist Bay K 
8644, formation of DAG and exocytosis 
(16) followed, which suggests the involve- 
ment of voltage-operated channels in CaZ+ 
entry. We  investigated whether nifedipine, 
an inhibitor of voltage-operated Ca2+ 
channels, would interfere with DAG forma- 
tion. Unfortunately, this was not a useful 
approach, because nifedipine had a stimu- 
latory effect on DAG formation (16), 
which is consistent with its stimulatory ac- 
tion on acrosomal exocytosis (23). Taken 
together, these results not only demonstrate 
that activation of phosphoinositidase C and 
PLC elicited by progesterone or ZP occurs 
after Ca2+ entry via CaZ+ channels, but 
also that the parallel formation of inositol 
phosphates triggered by these two agonists 
probably has no  relevance in CaZ+ modu- 
lation (24). 

Table 2. The generation of DAG triggered by pro- 
gesterone (P) and zona pellucida (ZP) takes place 
after Ca2+ influx via Ca2+ channels. Mouse sper- 
matozoa were capacitated in vitro, washed, re- 
suspended in Hepes-buffered Tyrode's medium 
(I I) without or with 1.8 mM Ca2+, and stimulated 
with 15 p,M A231 87, 15 p,M P, 1 ZP per microliter, 
or the Ca2+ channel agonist Bay K 8644 for 2.5 
min. EGTA (1 mM) or the Ca2+ channel blocker 
La3+ (250 FM) were added in some experiments 
(La3+ did not affect sperm viability). Lipids were 
extracted and separated, and DAG was quantified 
as described (13). Means ? SEM of at least three 
experiments are shown. 

Treatment DAG mass 

Caa EGTA La3+ Agonist (p,g/I O9 cells) 

ZP 
P 
ZP 
P 
ZP 
P 
ZP 
Bay K 8644 

(1 nM) 
Bay K 8644 

(I 00 nM) 

'Different from control, P < 0.001. tDifferent from 
CaH/P or Ca2+/ZP, P < 0.001 
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Progesterone- and ZP-induced Ca2+ in- 
flux activate similar pathways for the gen- 
eration of DAG. However, the two agonists 
may use different transducing pathways to 
prompt Ca2+ entry. Putative receptors for 
ZP3, the ZP glycoprotein with exocytosis- 
inducing activity (1 ), have been identified 
(2,  25), but their links with Ca2+-modulat- 
ine mechanisms are not well understood: 

%, 

the activation of a G protein-regulated 
Ca2+ channel by ZP has been proposed 
(21). Progesterone, on the other hand, acts 
on a membrane receptor (8) that might 
resemble the GABA receptor, because pro- 
gesterone-stimulated exocytosis is inhibited 
by GABA antagonists (7). The findings 
that sperm membranes appear to have 
GABA binding sites (26) and a protein or 
proteins recognized by antibodies to the 
GABA receptor a subunit (7) are consis- 
tent with this idea. 

T o  ascertain whether progesterone acts 
through a GABA receptor, the effects of 

progesterone and GABA on the generation 
of DAG (as an  indicator of both phosphoi- 
nositidase C and PLC activation) and on 
exocytosis were examined. It was found 
(Table 3)  that GABA triggered DAG gen- 
eration and exocytosis in mouse spermato- 
zoa and that, when used together, proges- 
terone and GABA expressed additive stim- 
u la tor~  ability on both DAG generation 
and exocytosis (27). Further characteriza- 
tion revealed that GABA- and progester- 
one-stimulated generation of DAG was in- 
hibited by bicuculline, a GABAA-receptor 
antagonist (28); similarly, exocytosis elicit- 
ed by these agonists was inhibited when 
bicuculline was included (Table 3). O n  the 
other hand, bicuculline did not inhibit 
DAG formation or exocytosis elicited by ZP 
(1 6) ,  which is consistent with the idea that 
ZP is acting through a different receptor. 
We  also verified that progesterone effects 
were not mediated by an  intracellular re- 
ceptor: Equimolar concentrations of the 

Table 3. GABA stimulates generation of DAG and acrosomal exocytosis, mimics progesterone (P) 
actions, and shows additive effects with P; bicuculline (a GABA,-receptor antagonist) inhibits both GABA 
and P actions. Mouse spermatozoa were capacitated in vitro and stimulated for 15 min, and acrosomal 
exocytosis (percent of AR pattern) was monitored as described (1 1). For determination of DAG mass, 
capacitated sperm were washed, resuspended in Hepes-buffered Tyrode's medium (1 7 ) ,  and stimulated 
for 2.5 min. Lipids were extracted and separated, and DAG was quantified as described (13). GABA = 0.5 
pM; bicuculline = 10 pM (preincubated with sperm for 10 min before agonist added; bicuculline did not 
affect sperm viability). Means i SEM of at least four experiments are shown. 

Treatment 
DAG mass 

GABA Bicu- 
culline 

(pg/l O9 cells) 
Exocytosis 

(%) 

^Different from control, P < 0.001. ?Different from 2.5 pM P or GABA, P i 0.01. $Different from 15 pM P or 
GABA, P i 0.001. 

Table 4. The sequential exposure of spermatozoa to progesterone (P) and zona pellucida (ZP) results in 
maximal generation of DAG, hydrolysis of PIP,, and exocytosis. For lipid changes, mouse spermatozoa 
were capacitated in vitro without or with 150 pCi [32P]P,/ml, washed, resuspended in Hepes-buffered 
Tyrode's medium (1 7 ) ,  and exposed to P, ZP, or both for 5 min; to P for 3 rnin, followed by a 2-min 
exposure to ZP; to the same agonists in the inverse order (ZP for 3 min, followed by P for 2 rnin); or to 
solvent controls (added from the beginning of incubation or in sequence). Lipids were extracted and 
separated, and DAG or PIP, were quantified ( 7  1). For exocytosis, spermatozoa were capacitated (1 1) and 
were stimulated with P, ZP, or both for 15 min; or they were exposed first to P or ZP for 3 rnin, then the 
other agonist was added for the rest of the incubation period (controls as above). Exocytosis (percent of 
AR pattern) was monitored as described ( 7  1). Results are means i SEM (n = 4). 

Treat- 
ment 

DAG mass 
(pg/l O9 cells) 

[3"]PIP, 
(cpm/l O8 cells) Exocytosis (%) 

Control 1.65 i 0.04 28,028 i 1,506 13.9 i 0.86 
2.5 pM P 2.30 2 0.05* 16,956 i 1,846* 34.14 i 1.24* 
0.5 ZP/pl 2:81 i 0.18* 15,976 2 1,189* 37.17 i 1.14* 
P + ZP 2.74 2 0.05* 12,555 2 950* 41.14 i 2.65* 
P +ZP 4.13 i O.ll*t 8,906 i 835*t 55.43 i 1.31*t 
ZP+P  2.32 i 0.25* 13,930 2 841 * 44.57 i 3.07* 

^Different from control, P i 0.001. tDifferent from 2.5 pM P, 0.5 ZP/pI, P + ZP, or ZP + P; P i 0.001. 

compound RU-486, a known antagonist of 
the intracellular progesterone receptor (29), 
did not inhibit uroeesterone-stimulated . - 
exocytosis (1 6). Taken together, these re- 
sults demonstrate that progesterone-stimu- 
lated exocytosis occurs (at least in part) via 
a GABA-like receptor, a remarkable find- 
ing because GABA actions are thought to 
be essentially inhibitory. It is not known 
how activation of the sperm GABA recep- 
tor leads to activation of a Ca2+ channel 
and to Ca2+ entrv, but this is not without a , , 
precedent, as reported for rat astrocytes 
(30). It is also possible that progesterone 
could act on a Ca2+ channel in a more 
direct manner, in addition to its action on 
the GABA, receptor (31 ); this idea is en- 
dorsed by the observation that the already- 
maximized GABA effect on DAG forma- 
tion and exocytosis was enhanced by inclu- 
sion of half-maximal concentrations of pro- 
gesterone (27) (Table 3). 

Finally, we tested the possibility that 
initiation of exocytosis by progesterone or 
ZP are not irreconcilable alternatives but, 
rather, that both agonists interact sequen- 
tially during sperm activation. Penetration 
of spermatozoa through the cumulus oopho- 
rus could result in an  acute exposure to low 
micromolar progesterone concentrations 
(4) (higher than those found in oviductal 
fluids) and initiation of exocvtosis, whereas 
interaction with the ZP wodd t;igger its 
com~let ion.  Because attachment and bind- 
ing of spermatozoa to the ZP take several 
minutes (32), a temporal separation be- 
tween agonists could be expected to en- 
hance their actions. When spermatozoa 
were treated sequentially with half-maximal 
concentrations of progesterone and ZP (see 
Fig. I ) ,  exocytosis was enhanced as com- 
pared with simultaneous presentation of 
both agonists or presentation of agonists in 
the inverse order (Table 4). Similarly, treat- 
ment with progesterone followed by ZP led 
to maximal generation of DAG and maxi- 
mal breakdown of PIP, (Table 4)  and PIP 
(16). These results demonstrate a priming 
role for progesterone in the initiation of 
exocytosis. In addition, they suggest that 
the effective concentrations of these ago- 
nists in vivo mav be much lower than orig- 
inally thought. 'cross talk between 
ways activated by each agonist is possible, 
although it is unlikely to relate to the gen- 
eration of DAG, because similar pathways 
are activated by both agonists. It is more 
likely that cross talk exists between mech- 
anisms underlying Ca2+ entry. Another 
more attractive possibility is that the se- 
quential action of these agonists is respon- 
sible for the sequential activation of events 
requiring different concentrations of Ca2+ 
(14, 22). Activation of sperm phospho- 
inositidase C and PLC for DAG generation 
is known to take place even after limited 
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Ca2 + entry (14), but activation of phospho-
lipase A2 (which occurs well after DAG 
generation) (33) and membrane fusion (the 
final step in the sequence) require higher 
concentrations of intracellular Ca2 + (14, 
22). We therefore propose that small 
amounts of progesterone may trigger intra­
cellular Ca 2 + rises (5) that are sufficient 
for DAG generation, but that ZP action is 
necessary for a further rise in Ca 2 + and for 
activation of late processes in the se­
quence underlying acrosomal exocytosis. 
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Stimulation and Inhibition of Angiogenesis by 
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In many mammalian species, the placenta is the site of synthesis of proteins in the 
prolactin and growth hormone family. Analysis of two such proteins, proliferin (PLF) and 
proliferin-related protein (PRP), revealed that they are potent regulators of angiogen­
esis; PLF stimulated and PRP inhibited endothelial cell migration in cell culture and 
neovascularization in vivo. The mouse placenta secretes an angiogenic activity during 
the middle of pregnancy that corresponds primarily to PLF, but later in gestation 
releases a factor that inhibits angiogenesis, which was identified as PRP. Incubation 
of placental tissue with PLF led to the specific binding of this hormone to capillary 
endothelial cells. Thus PLF and PRP may regulate the initiation and then the cessation 
of placental neovascularization. 
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