
is bound. Our results show that DM accu- 
mulates in the intracellular class II-con- 
taining compartment implicated as the site 
of class I1 peptide loading. But whereas 
classical class I1 molecules reside principally 
at the cell surface. in the steadv state little 
if any DM was present there. 1; is possible 
that DM does reach the cell surface and is 
then rapidly internalized. Consistent with 
this hypothesis is the presence of a Tyr-X- 
X-Leu (X, any amino acid) sequence in the 
cytoplasmic tail of DMB (23). This consen- 
sus sequence functions in a number of other 
proteins (including LAMP-1, which colo- 
calizes with DM to the MIIC) as a sienal for " 
rapid internalization from the cell surface in 
clathrin-coated  its. The accumulation of 
DM in an intracellular compartment where 
loading of class I1 molecules probably occurs 
suggests that DM may be directly involved 
in this process. 
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Reconstitution of an Operational MHC Class II 
Compartment in Nonantigen-Presenting Cells 

Lars Karlsson,* Annick Peleraux, Ragnar Lindstedt, 
Monika Liljedahl, Per A. Peterson 

Professional antigen-presenting cells (APCs) have a distinct compartment in which class 
II molecules are proposed to acquire antigenic peptides. Genetic evidence suggests that 
human leukocyte antigen (HLA)-DM, an unusual class II molecule, participates in this 
process. Peptide acquisition was reconstituted in nonprofessional APCs by transfection 
of class II, invariant chain (li), and H-2M, the murine equivalent of DM. The H-2M het- 
erodimer appeared in an endosomal compartment, not at the cell surface, and the 
localization was independent of li. The data presented show that H-2M, class II, and li are 
the minimally required components for efficient formation of stable class Il-peptide 
complexes, and thus for a functional class II compartment. 

Recen t  reDorts have described the exis- 
tence of a special major histocompatibility 
complex (MHC) class 11-containing endo- 
soma1 compartment in APCs where class I1 
is thought to bind (that is, to be loaded 
with) antigenic peptides (1, 2 ) .  This MHC 
class I1 compartment has been defined on 
the basis of subcellular fractionation and 
electron microscopy, but the biochemical 
reauirements necessarv for the function of 
th$ compartment and for peptide-class I1 
association are not known. The observation 
that B cell lines with mutated HLA-DM 
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genes are poor at antigen processing (3, 4) 
prompted us to investigate the role of H-2M 
for the formation of a functional class I1 
compartment. 

The formation of compact, SDS-stable 
class I1 dimers has been correlated with a 
change in their association with peptides 
(5) and with their ability to present exoge- 
nous antigens (6, 7). We asked whether 
H-2M could improve the formation of sta- 
ble peptide-class I1 complexes in nonpro- 
fessional APCs transfected with human 
(HLA-DR3) or murine (H-2Ak) class I1 
molecules together with combinations of Ii 
and H-2M (8). We found that only in the 
presence of both Ii and H-2M could SDS- 
stable DR dimers be detected (Fig. 1A). 
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Neither Ii nor H-2M alone was sufficient to 
stabilize the DR molecules (9). In contrast, 
HeLa cells expressing H-2Ak and Ii did give 
rise to some compact dimers, although in 
the presence of H-2M the amount of dimer 
was increased substantially (Fig. 1B). Ex- 
pression of H-2Ak alone gave rise to minor 
amounts of a high molecular weight smear 
but few or no compact dimers. Coexpres- 
sion with H-2M, in the absence of Ii, in- 
creased the amount of SDS-stable smear, 
but did not lead to appearance of compact 
d' ~mers. 

To see whether stochiometric amounts 
of class I1 and H-2M were needed for stabi- 
lization, we titrated the amount of H-2M by 
dilution of the amount of transfected DNA. 

Omission of H-2M DNA rendered DR mol- 
ecules SDS sensitive, but even small 
amounts of H-2M stabilized the DR mole- 
cules (Fig. 1C). Immunofluorescence stain- 
ing showed that the amounts and patterns 
of DR and Ii expression were not affected by 
the dilution of H-2M (10). 

Neither the HLA-DM nor the H-2M 
protein has been characterized. If H-2M is 
important for antigen processing, it should 
be present in normal APCs. To determine if 
this was the case, we briefly metabolically 
labeled (pulsed) BIO.M splenocytes with 
35S-methionine and 35S-cysteine. Radiola- 
beled material was immunoprecipitated 
from cell lysates either with 10-2-16, a 
monoclonal antibody reactive with H-2Af 

A 1 , 3 4 5 6 7 8  
11 * + . . * * . -  

1 2 3 4 5 6 , 8  
I j  + + . - + + . .  

1 2 3 4 5 6 7 8 9 1 0  

H - 2 M . + +  + . . . .  H - 2 M + + + + - - - -  Ratio . . + . . Boiled + - + - + - + 
DR.1i.M i : i : i  1 : i : i n  i:1:1/4 i : i : ~ m  i : i : o  

+ - + . + - + - + -  Boiled . 

Fig. 1. Effect of H-2M expression on peptide loading of class I I  in transfected HeLa cells. (A) Formation 
of SDS-stable dimers of HLA-DR3 in cells transfected with different combinations of DR3, H-2M, and l i  
(6). Lanes 1 and 2 represent transfections with all three components, lanes 3 and 4 transfections with only 
DR3 and H-2M, and lanes 5 and 6 transfections with only DR3 and li. Lanes 7 and 8 represent 
transfections with only DR3. (B) Transfections as in (A), except that DR3 was substituted for H-2Ak and 
murine li was used instead of human li. (C) Formation of SDS-stable dimers of HLA-DR3 in cells where the 
amount of H-2M was titrated by substitution of Ma and Mb cDNAs with vector DNA. Lanes 9 and 10 
represent transfections where no H-2M DNA was included. Whole-cell extracts in SDS sample buffer 
were either boiled or left at room temperature before being subjected to SDS-PAGE and transfer to 
protein immunoblots. Blots were probed with mAb DA6.147 (anti-DRa) (34) (A and C) and with mono- 
clonal antibody 10-2-1 6 (anti-H-2Apk) (B). In (A) and (C), a indicates DRa monomers, a@ indicates DR 
heterodimers; in (B), P indicates H-2AP monomers and C indicates compact H-2A dimers. 
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Fig. 2. lrnmunoprecipitation 
LllU" I I- b 

from 3%-labeled spleen cells 0  15 30 60 180 300 46 
. - . - . . - 

(12). (A to D) BIO.M spleno- 
cytes were labeled for 20 rnin 
and analyzed immediately (0) or -2n 
after various periods of incuba- -30 

tion with unlabeled medium (in 
minutes) as indicated. Class I I  - 
molecules were immunopre- 
cipitated with 10-2-1 6 (anti-H-2Af,k) (A and 6) or K553 (anti-H-2M) (C and D). Sar / 
SDS-PAGE without (A and C) or with (B and D) Endo H treatment. (E) B1O.M SF 1 
for 4 hours. H-2M was immunoprecipitated from the cell lysates with K553 
dimensional gel electrophoresis, a, actin; a, H-2Ma; p, H-2Mp; l i ,  invariant chai~ 

(1 I), or with K553, a rabbit antiserum to 
purified H-2M (1 2). SDS-polyacrylamide 
gel electrophoresis (SDS-PAGE) analysis of 
the 10-2-16 precipitate showed a series of 
bands 31 to 41 kD in size, as expected for 
H-2Af (13) (Fig. 2, A and B). The K553 
antiserum precipitated bands of 27 to 32 kD 
immediately after labeling (Fig. 2C). One of 
the bands probably was Iip31, and similar 
analysis of pulse-labeled HeLa cells separate- 
ly transfected with the H-2Ma (Ma), 
H-2Mb (Mb), or Iip31 complementary 
DNA (cDNA) clones allowed us to identify 
the major bands. Endoglycosidase H (Endo 
H)  treatment of the precipitates reduced the 
size of Ii and Ma  to the same extent (Fig. 
ZD), indicating that Ma, like Ii, contained 
two N-linked carbohydrates, as predicted 
from the Ma  amino acid sequence (14). 
Addition of unlabeled medium to the prela- 
beled BIO.M splenocytes for increasing 
times caused Ii to disappear and Ma  to 
become more resistant to Endo H treatment. 
However, as with other class I1 a chains, 
only one of the two N-linked carbohydrates 
acquired resistance to Endo H (15). MP, in 
contrast, was not sensitive to Endo H, con- 
sistent with the lack of N-linked addition 
sites in the Mb2 sequence (see below) (16). 
Two-dimensional gel electrophoresis of 
K553-precipitated material (Fig. 2E) con- 
firmed that the band seen in Fig. 2, A to D, 
was indeed Iip31. The Ma chain is acidic 
and barely migrated into the gel under the 
conditions used. 

The recently described class I1 compart- 
ment is part of the endosomal system, and 
H-2M could therefore be expected to have 
an endosomal location if it is directly in- 
volved in peptide processing. We investi- 
gated the subcellular localization of H-2M 
using indirect immunofluorescence (17) 
(Fig. 3). .Figure 3A shows the costaining of 
H-2Ad and H-2M in a B cell line analyzed 
by confocal microscopy. The separate imag- 
es (Fig. 3B) show H-2Ad to be present both 
intracellularly and at the plasma membrane. 
The H-2M staining, in contrast, was almost 
completely located to intracellular vesicles. 
Virtually no staining of the plasma mem- 
brane could be seen. The lack of H-2M at 
the cell surface was confirmed by K553 
staining of nonpermeabilized HeLa cells 
transiently transfected with the H-2M 
cDNAs, as well as with H-2Ak and Ii (Fig. 
3C). H-2Ak, in contrast, was abundant at 
the plasma membrane (Fig. 3D). Staining of 
permeabilized cells expressing the same 
molecules showed staining similar to that 
seen in the B cell line. Figure 3, E and G, 
show the distinct vesicular localization of 
H-2M in permeabilized HeLa cells cotrans- 
fected with only the Ma and Mb cDNAs. 
To a large extent the H-ZM-containing 
vesicles costained with the lysosomal mark- 
ers LAMP-1 (Fig. 3F) and CD63 (18), and 
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to some extent also with the cation-inde- 
pendent mannosed-phosphate receptor 
(M6PR) (Fig. 3H), a marker for late endo- 
somes (19); however, the vesicles did not 
stain for transferrin receptors or y-adaptin, 
markers for early endosomes and the trans- 
Golgi network, respectively (20). H-2Ak 
was not seen in vesicles in the absence of Ii, 
confirming the role of Ii in directing class I1 
to the endosomal pathway (21 ). In contrast, 
the presence or absence of Ii did not affect 
the localization of H-2M, indicating that 
H-2M has its own targeting information. 
K553-staining of cells transfected with only 
Ma (Fig. 31) or Mb (10) cDNAs showed 
endoplasmic reticulum (ER) staining. 
Therefore the two H-2M chains, like those 
of other class I1 molecules, must associate in 
order to be transported out of the ER. 

To see whether the H-2M-containing 
compartment was accessible to fluid-phase 
markers, we allowed HeLa cells to internal- 
ize biotinylated dextran for increasing 
lengths of time. After 1 hour, vesicles 
costaining for H-2M and dextran could be 
seen, and after 2.5 hours a large number of 
vesicles stained for both markers (Fig. 3J). 

The H-2M gene locus contains one Ma 
gene and two Mb genes (22). Sequence 
analysis of genomic DNA showed that the 
published Mb cDNA sequence corre- 
sponds to the Mbl gene (23). The Mp2 
protein sequence was found to be quite 
different from the Mp1 sequence, with the 
differences concentrated to the mem- 
brane-distal domain (Fig. 4). The site for 
N-linked glycosylation in Mp1 is not 
present in Mp2. Unexpectedly, when we 
analyzed splenocyte mRNA sequences 
from five different mouse strains, we could 
only detect Mb2 sequences. Further anal- 
ysis indicated that less than 10% of spleen 
Mb RNA was derived from the Mbl gene, 

Fig. 3. H-2M has an endosomal location (1 7). (A 
and B) Confocal images of U<35.2 stained with 
K553 (antii-2M) (green) and BPI 07 (anti-li-2Ad) 
(red) (35). Yellow staining indiites colocalkat'bn 
(A). The separated images (B) show K553 staining 
to be confined to vesicular structures, whereas 
the BPI 07 staining is located both at the cell sur- 
face and intracellularly. (C and D) HeLa cells trans- 
fected with H-2M, H-2Ak, and li. In nonpermeabi- 
lied cells, K553 staining is absent from the plas- 
ma membrane (C), whereas 10-2-1 6 staining (an- 
ti-li-2Ak) is abundant at this location (D). (E to H) 
H-2M-transfected HeLa cells, in the absence of 
class I1 and li, costained with K553 (E) and 
LAMP-1 O, or K553 (G) and CI-M6PR (H). (I) 
HeLa cells transfected with only Ma stained with 
K553 show the single chains to be localized in the 
ER. (J) Confocal image of HeLa cells transfected 
with H-2M, H-2Ak, and li. Cells were allowed to 
internalize biotinylated dextran for 2.5 hours be- 
fore fixation and staining with K553 (green) and 
streptavidin (red). Yellow staining indicates colo- 
calkation. 

a finding consistent with the apparent 
lack of glycosylated Mp1 protein in the 
immunoprecipitation experiments. As 
with the human DM genes (24), we found 
the Ma and Mb2 sequences to be essen- 
tially nonpolymorphic. 

Our data show that H-2M is expressed 
as a heterodimer in normal splenocytes. It 

is mainly localized to the endosomal path- 
way and only small amounts are present at 
the cell surface, confirming previous sug- 
gestions that DM would function intracel- 
lularly (3). H-2M is associated with Ii 
during synthesis but does not, in contrast 
to other class I1 molecules, appear to re- 
quire Ii for targeting. Two other functions 
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Fig. 4. Comparison of ami- -18 Pl -  
no acid sequences (23) be- MP2 ~ G G F V A H V E S T C V L N D A G T P Q D F T Y C V S F N K D L  32 

-------------------------------*------------------ 
tween H-2MP2 sequence Mp1 NAALWLLLLVLSLHCMGAGGFVAHVESTCVLDDAGTPQDFTYCVSFNKDL 
derived from BALB/c (Mp2d) 
and the previously published LACWDPDVGKIVF'CEFGVLSRLAEIISNILNEQESLIHRLQNGLQDCATH 82 
H-2Mp1 sequence (Mpl d). ---_--*_--_--------**---**-*---**---**------*---*-  
Dashes indicate identity be- LACWDPIVGKIVF'CEFGVLYPLAE~SRILNKEESLLQRLQNGLPDCASH 

tween the sequences; aster- Pz- 
isks indicates amino acid TQPFWDVLTHRTPAPSVRVAQTTPFNTREPVMLACYVWGWPADVTITWM 1 3 2  --_--**----_-*__--_-------------------------------  differences. The signal se- 

TQPFWNALTHRTRPPSVRVAQTTPFNTREPVMLACYVWGFYPADVI'ITWM 
auence is underlined and 
the N-linked carbohydrate 
addition site is double-un- KNGQL~PSHSNKEKTAQPNGDWTYQTVSILALTPSYGDVYTCWQHSGTS 182 

.................................................. 
derlined. Amino acids are K N G Q L ~ P S H S N K E K T A Q P N G D W T Y Q T V S Y L A L T P S Y G D ~ S G T S  

numbered from the putative 
CP* tm-c first amino acid in the mature cyt- 

EPIRG~TPGLSPIQTVK~S~SAATLG~FIIFCVGFFRWRK~H~~~YTP 232  
protein. cp, connecting pep- .................................................. 

tide; tm, transmembrane re- EPIRGDWTPGLSPIQTVKVSVSAATLGIGFIIFCVGFFRWRKSHSSSYTP 

gion; cyt, cytoplasmic tail. 
LPGSTYPEGXH - *  --------- 
LSGSTYPEGXH 

have been attributed to Ii: It facilitates 
class I1 assembly and transport out of the 
ER, and it prevents premature antigen 
binding to class I1 molecules (25). Because 
H-2M assembly is not noticeably affected 
by the presence of Ii ( lo ) ,  we propose that 
Ii binding to H-2M serves to prevent 
H-2M from exercising its function before 
H-2M arrives in the endosomal system. 
The finding that H-2M increases the 
amount of SDS-stable H-2Ak also in the 
absence of Ii, suggests that removal of Ii or 
Ii-derived CLIP (class II-associated in- 
variant chain peptides) fragments from 
class I1 is not a direct function of H-2M, 
although H-2M mav induce conforma- 
tional changes in class I1 leading to de- 
creased affinity for Ii and increased ability 
to bind other peptides or proteins. In the 
absence of Ii, only the latter effect would 
be seen. The present data also do not 
exclude a function of H-2M as a peptide 
carrier delivering peptides to class 11. 

Class 11, Ii, and H-2M were sufficient 
to induce peptide loading onto class I1 in 
nonprofessional APCs, but it is not clear 
which structural compartments are neces- 
sary for antigen processing and whether 

most cell types, assuming the role of "class 
I1 compartment" and becoming more pro- 
nounced when the cells express class 11, Ii, 
or H-2M. Different types of professional 
APCs may also contain special compart- 
ments or molecules that mav skew the 
repertoire of presented peptide;. However, 
for formation of stable class II-peptide 
complexes, expression of class 11, Ii, and 
H-2M appears to be both necessary and 
sufficient. The model system presented 
here is easily manipulated and will allow 
us to investigate the true nature of the 
class I1 compartment. 
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Reversion of the Mouse pink-eyed unstable 
Mutation Induced by Low Doses of X-rays 

Robert H. Schiestl,* Fathia Khogali, Nicholas Carls 

Deletions and other genome rearrangements can be caused by radiation and are asso- 
ciated with carcinogenesis and inheritable diseases. The pink-eyed unstable (pun) mu- 
tation in the mouse is caused by a gene duplication and reverts to wild type by deletion 
of one copy. Reversion events in the mouse embryo were detected as black spots on the 
fur of the animals or microscopically as partially black hair in a background of colorless 
hair. The frequency of partially black hair was increased by x-rays at very low doses. A 
linear dose-response relation was found between 1 and 100 centigray. 

Sources of low-level radiation are almost 
ubiquitous in our environment and in- 
clude nuclear explosions, radiation acci- 
dents, and medical diagnostic, therapeu- 
tic, and occupational exposure. Conse- 
quently, there is much interest in the oc- 
currence of carcinogenesis and the genetic 
effects associated with exposure to low- 
dose radiation. The  Oxford childhood sur- 
vey that was started in the 1950s and 
other studies have shown about a twofold 

increase in the occurrence of cancer after 
diagnostic intrauterine x-ray exposure at 
doses of approximately 2 cGy (1). In most 
cases no  increased risk has been detected 
after exposure to doses below 10 cGy 
among atomic bomb survivors and indi- 
viduals exposed to therapeutic irradiation 
(1) .  This finding may indicate a higher 
susceptibility of fetal tissue to radiation. 
Currently, no  genetic end points or bio- 
logical markers in animals or humans are 
available to detect irradiation doses close 
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daily doses of 1 to 10 cGy, and no  effect 
was found with an  acute x-ray exposure of 
5 cGy. 

Ionizing radiation is mutagenic and 
carcinogenic and preferentially induces 
deletions rather than point mutations (3). 
Genome rearrangements such as deletions 
are frequently associated with tumor cells 
(4) .  Because of this association, a system 
selecting for deletions by intrachromo- 
soma1 recombination has been constructed 
in the yeast Saccharomyces cerevisiae (5) 
and has been termed deletion (DEL) assay. 
DEL recombination can be induced with a 
wide variety of carcinogens, including x- 
rays and carcinogens that have no  effect in 
most other short-term tests (6). In addi- 
tion, deletion of one copy of a duplication 
of part of the hprt gene in C H O  cells can 
be induced by x-rays and by several muta- 
genic carcinogens (7). 

To  determine the effect of x-ray expo- 
sure on the frequency of deletion events 
between two alleles of a gene duplication in 
mammals in vivo, we used the pink-eyed 
unstable (pun) mutation in the mouse. The 
pun mutation causes a reduction in the pig- 
ment in coat color and eve color. The  bun 
mutation is caused by a disruption of ;he 
pink-eyed dilute locus, which results in a 
DNA sequence duplication of about 70 kb 
in a head to tail conformation (8). Sponta- 
neous reversion of pun is caused by a dele- 
tion of one of the two copies of the dupli- 
cated sequence, which results in production 
of wild-type melanin in melanocytes. Re- 
version events are measured as black spots 
on the gray coat. The reversion frequency of 
pun is at least three to five orders of magni- 
tude greater than that of other recessive 
mutations at other coat color loci (9). Ap- 
proximately 1.8% (8) to 3.8% (10) (5.6% 
in our study) of the offspring of homozygous 
C57BL/6J pun/pun mice have patches of 
wild-type color in their coats and are thus 
mosaic revertants. 

Homozygous mice (C57BL/6J pun/pun) 
(1 I )  were used in these experiments. A n  
increase in reversion events would give rise 
to an increase in the number of animals 
that show dark patches. The protocol used 
for this test was similar to  the "mouse spot 
test" (12). Matings were set up between 
mice homozygous for pun and pregnancy was 
timed. Female mice were irradiated with 
100 cGy of x-rays at 8.5, 9.5, and 10.5 days 
after conception. Dark patches on the coats 
of the offspring were counted, and their size 
and distribution were recorded. Irradiation 
at 8.5 days after conception caused neonatal 
deaths in about 40% of the offspring (Table 
1). With irradiation at later stages, the vi- 
ability of offspring improved, and only 
about 1% of neonatal deaths occurred when 
irradiation was done 10.5 days after concep- 
tion. Less than 20% of the offspring irra- 
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