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Catalytic Site Components Common to Both 
Splicing Steps of a Group II lntron 

Guillaume Chanfreau and Alain Jacquier* 

The splicing of group II introns occurs in two steps involving substrates with different 
chemical configurations. The question of whether these two steps are catalyzed 
by a single or two separate active sites is a matter of debate. Here, certain bases 
and phosphate oxygen atoms at conserved positions in domain V of a group I1 self- 
splicing intron are shown to be required for catalysis of both splicing steps. These 
results show that the active sites catalyzing the two steps must, at least, share common 
components, ruling out the existence of two completely distinct active sites in group 
I1 introns. 

G r o u p  11 introns are found in the ge- 
nomes of organelles of lower eukaryotes 
and plants and in bacteria (1 ). Some group 
I1 introns are able to catalvze their own 
excision in vitro in the presence of mag- 
nesium (2). Their excision follows a path- 
way similar to that of nuclear precursor 
mRNA (pre-mRNA) splicing, the intron 
being released in a branched lariat form 
(2). In this pathway, the substrates for the 
two steps are different: The first transes- 
terification results from the attack at the 
5' splice site by a 2'  hydroxyl, and the 
second transesterification is initiated by a 
3' hydroxyl. The sequences at the 5' and 
3' junctions are also different (1). Because 
in nuclear ure-mRNA introns the same 
phosphorothioate diastereomer (Rp) in- 
hibits both stem when introduced at the 
junctions (3), the two transesterifications 
cannot be considered as the forward and 
reverse of the same reaction, as in group I 
introns (4). Whether distinct active sites 
catalyze the two chemical steps (3) or 
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whether a structural rearrangement be- 
tween the two stem accommodates the 
different substrates in a single active site 
(5) is a matter of conjecture. To address 
this question, we have searched for active 
site components involved in each step of 
group I1 self-splicing. 

Grouu I1 introns are folded into six 
structural domains ( 1 ) .  Among these, do- 
main V is the most conserved element in 
primary sequence, and deletion experi- 
ments have shown that domain V is es- 
sential for splicing (6, 7). Moreover, it is 
able to catalyze 5' junction hydrolysis 
when added in trans 18). For these rea- ~, 

sons, domain V is a good candidate for 
carrying active site elements. We have 
adapted the modification interference 
technique (9)  to investigate the role of 
structural elements of domain V in the 
catalysis of each splicing step (Fig. 1) .  To 
investigate the effects of modifications on 
each of the two splicing steps, we used two 
assays (Fig. IA) .  (i) In a cis-splicing assay 
the CX fragment is annealed to a subunit 
composed of exon 1 and domains I to I11 
(E l  -XC fragment); under these conditions 
lariat formation is rate-limiting, allowing 
the study of the effects of modifications on 
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Fig. 1. Splicing of the wild-type (WT) 
and the two-subunit (2s) precursors. 
The last intron of the Saccharomyces 
cerevisiae cytochrome oxidase sub- 
unit I mitochondria1 gene (intron 
Sc.cox 1/5c or a15g) was divided into 
two subunits that can be annealed 
with long GC-rich complementaryse- 
quences (GC clamps) that replace 
nonessential peripheral structures of 
domain IV. With this system, a single 
subunit carrvina domains V and VI 

A 
Cis splicing: Trans splicing: 

Lariat formation Exon ligation 

XC cx 
I 
m 

J 

I L  

B 
Cis-spliclng Trans-splicing 

wr 2s WT 2s 
Time - - - - 
(min) 0 2 10 0 2 10 0 5 15 0 5 15 

- -  - 

Lar. I. + - 

and exon 2 ( ~ ~ i u b u n i t )  can be inde- 
pendently labeled at the 5' end and 
modified. (A) Scheme of the two El-E2+ 
splicing assays. El ,  exon 1, repre- 

Bottom 

sentedby a biack box; exon 2, a gray w 
box; the intron, a solid line. The vertical bars intervening in the intron sequence I., lariat and the linear intron, respectively; El  -E2, ligated exons. Only the top 
represent complementary GC clamps. El  -XC, XC, and CX are the RNA and the bottom of thegel are shown. No other products were detectable in the 
subunits used for reconstitution of active molecules (20). (B) Time course of cis portion of the gel that is not shown. 
and trans splicing (20). P, precursor; I-E2, linear intermediate; Lar. I. and Lin. 

Fig. 2. Modification interference. Abbreviations are the 
same as in Fig. 1 B except for the following: Prec, precur- 
sor, and Ipt, modified RNA without splicing. (A) DEPC 
modification. CX RNA labeled at the 5' end was partially 
modified by DEPC, annealed with cold complementary 
subunit, and incubated at 45OC in HS buffer. The remain- 
ing precursor and products were subjected to aniline 
cleavage and analyzed by electrophoresis (21). Note that 
in the cis-splicing assay, positions downstream of the 
branchpoint were not mapped because of lariat forma- 
tion that causes a strong shift in migration. (B) Hydrazine 
modification interference. Conditions are as in (A), except 
that hydrazine was used to remove uracil (9). Hydrazine- 
modified cytidines cannot be mapped from a 5' end label 
(9). (C) (Facing page) lnterference of Rp phosphorothio- 
ate at purines. The CX fragment was transcribed in the 
presence of low amounts of purine phosphorothioate 
nucleotides, labeled at the 5' end, annealed with com- 
plementary subunit, and incubated at 45°C in LS buffer 
without (lanes LS) or with 1 mM MnCI, (lanes LS + Mn), or 
in HS buffer. The remaining precursor and products were 
subjected to iodine cleavage and analyzed by electro- 
phoresis (21). (D) (Facing page) lnterference of Rp phos- 
phorothioate at pyrimidines. As in (C), except that pyrimi- 
dines phosphorothioate nucleotides were used. 
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r 
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the first step (10). (ii) In a trans-splicing 
assay the CX fragment is annealed to a 
subunit carrying domains I to 111 but lack- 
ing exon 1 (XC fragment); the resulting 
molecule corresponds to a linear interme- 
diate that can directly undergo the second 
splicing step (exon ligation) on addition 
of exon 1 molecules, thus bypassing the 
first step. With this latter assay, modified 
positions, including those blocking the 
first step, can be tested for the second step. 
The reaction time courses of the two- 
subunit intron were similar to those of the 
wild-type intron in both assays (Fig. 1B). 

The modification interference patterns 
in domains V and VI obtained for lariat 

used to analyze the involvement of bases 
in splicing. PhosphorImager quantifica- 
tion of the modification effects are sum- 
marized in Fig. 3. As expected from se- 
quence conservation (Fig. 3A), the strong- 
est inhibitory effects of base modification 
are found within domain V. The Datterns 

1 mM MnClz (LS + Mn) buffer to look for 
manganese rescue indicative of divalent 
cation association with specific nonbridging 
phosphate oxygens (I I) ,  and a high salt 
(HS) buffer which is more permissive to 
alteration of the intron (7). 

Sulfur substitution on phosphates 5' to 
positions G817 and C839 totally blocked 
both steps, whatever the conditions used 
(Fig. 2, C and D) (1 2). Step-specific inhi- 
bitions were observed for phosphorothio- 
ates 5' to A838 and A861 (first step) and 
A851 (second step). However, these de- 
fects were weak and could be totally elim- 
inated under high salt conditions. These 
observations indicate that these oxygens 
are not directly involved in catalysis. Oth- 
er inhibitory effects were also observed for 
both steps (phosphates 5' to A816, C818, 
and G836) and could also be eliminated 

of modification interference within that 
domain are very similar in both assays. 
Mild effects are observed in domain VI, 
but they are specific to lariat formation. 
This finding is not surprising because do- 
main VI carries the branch site, one of the 
substrates of the first splicing step. 

In addition, we looked for nonbridging 
phosphate oxygen atoms involved in splic- 
ing by phosphorothioate incorporation (Fig. 
2, C and D). Effects of Rp phosphorothioate 
substitutions were analyzed in different 
buffers: a low salt (LS) buffer, a low salt plus 

formation (cis splicing) and exon ligation 
(trans splicing) are shown in Fig. 2. Di- 
ethyl pyrocarbonate (DEPC) (Fig. 2A) or 
hydrazine (Fig. 2B) modifications were 

D CIS T m r  
C + 
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-7 

5 9 5 3 
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Effect of Rp phosphoroU~ioates A Sequence B Lariat formation 
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Fig. 3. Summary of modification interference data. (A) 
Sequence and conservation of domains V and VI (DV DVI 

and DVI). Numbering is according to the Sc.cox 1/5c 3' splice site 
intron. Black circled positions are invariant nucleotides 
in group IIA and group llB introns, and circled nucleo- c Exon ligation D Binding assay 
tides are strongly conserved nucleotides according to 
(7). (B) Quantitation of effects of modifications on lariat 
formation. Quantitations were done with a Phosphor- 
Imager. For each position, values (ranges listed in the 
legend to the left) are the ratios of band intensity in the 0 d $  

O P precursor over band intensity in the lariat intron. The 815&e 
arrows labeled Mn2+ point to the two positions for 

*0000*08 0 which manganese rescue could be detected. (C) Quan- 0 9.h titation of effects of modifications on exon ligat~on. Val- 850<) 840 • 

ues are the ratios of band intensity in the linear interrne- 0- *... 
diate over band intensity in the linear intron. (D) Quan- 
titation of effects of modifications in the doma~n V bind- 
ing assay. Values are the ratios of band intensity in the 
input RNA over band intensity in the bound population 
to take into account the effect of modification on bind- 
ing and on domain V folding. 

Fig. 4. Modification interference in 
the binding assay. (A) Domain V 
binding assay. The binding of 5' 

8000 

32P-labeled domain V (0.2 mM) to 
unlabeled El/DI-Ill (3 mM) was an- = ; m atyzed by a gel filtration column as - 
described (14). with minor modifi- E 
cations (22). The curves represent 

4000 the radioactivity (Phosphorlmager = 
counts) measured in each fraction 
when the 32P-labeled domain V iE 
was mixed with unlabeled El/DI-Ill 2000 

(black dots). The peak of radioac- 
tivity coincides with the peak of 
elution of unlabeled El/DI-Ill mon- o 

1 5 9 13 17 21 25 29 33 37 41 45 
itored by ultraviolet absorption at 
254 nm (arrow at the top of the Fndlon number 

figure). This corresponds to the 
specific binding of domain V to El/DI-Ill because domain V elutes as domain V alone when it is mixed with 
a control RNA of the same size as El/DI-Ill (empty diamonds). The assay is sensitive to the dissociation 
constant (K,) (74). (6) DEPC modification interference on binding. After incubation of DEPC-modified 5' 
32P-labeled domain V with El/DI-Ill and gel filtration, fraction 10 (A) which contains bound molecules was 
dialyzed against 0.1 % SDS, and the RNA was ethanol-precipitated, cleaved with aniline, and loaded on a 
20% acrylamide sequencing gel in parallel with aniline-cleaved input RNA. The cleavage pattem of fraction 
20 (A) obtained after incubation with unspecific RNA did not show a marked difference with input RNA (73). 
(C) Phosphorothioate substitution interference on binding. As in (B), except that DEPC treatment was 
replaced by thiophosphate incorporation 5' to adenosines, cytosines, and guanosines (one substitution per 
molecule on average). Substituted positions were mapped by iodine cleavage. Substitutions at uridines, 
which do not affect splicing, were not examined. Thio, phosphorothioates. 

DEPC 
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by high salt conditions [Fig. 2, C and D, 
cis-splicing assay; the suppression effect 
was also observed in the trans-splicing 
assay (13)l. Among these inhibitory ef- 
fects, the effect of sulfur substitution 5 '  to  
A816 and C818 could be partially com- 
pensated for (about twofold) by addition 
of Mn2+ (Fig. 2, C and D). Thus, these 
two positions are likely to be involved in 
divalent metal ion binding ( 1  1). The  
manganese rescue at position C818 was 
reproducible only in the trans-splicing as- 
say, but this result does not exclude its 
involvement in metal ion binding during 
the first step as well. 

In summary, only two prochiral-Rp 
phosphate oxygens (5' to  G817 and (2839) 
are strictly required in all conditions, and 
this is true for both steps. This result may 
reflect their direct involvement in the 
active site, but the possibility that these 
phosphate oxygens, as well as the most 
important bases, are simply required to 
maintain the overall structure of domain 
V or its interactions with the rest of the 
intron (or both) could not be excluded. 
To  address this possibility, we used modi- 
fication interference in an  assay developed 
by Pyle and Green that measures the bind- 
ing of an  isolated domain V to an  RNA 
fragment carrying exon 1 and domains I, 
11, and 111 (El/DI-111) (Fig. 4 )  (14). Some 
base modifications, especially at positions 
A831 and A832 in the G A A A  tetraloop 
and G840 and U841 (13) in or near the 
bulge (Fig. 3D), showed a strong inhibito- 
ry effect on binding. In contrast, no  Rp 
phosphorothioate significantly inhibited 
binding (Fig. 4C). The  binding assay was 
performed under high salt conditions (0.5 
M KCl) in which phosphorothioate inhi- 
bition was observed only for phosphates 5 '  
to G817 and C839 (1 2 ) .  Thus, the effects 
of sulfur incorporation at these two posi- 
tions cannot be explained by binding or 
structural defects. This result does not  ex- 
clude the possibility that phosphates 
showing a strong effect in low salt are 
involved in binding. With a more sensi- 
tive assay, some phosphate oxygens of do- 
main V have been found to be involved in 
binding (15). Two of these (5'  to  G836 
and A838) correspond to positions show- 
ing an  effect on activity in low salt con- 
ditions only. 

A comparison of the results obtained 
with the different assays (Fig. 3) reveals 
that some elements clearly appear to be 
involved in activity for both steps but are 
not rate-limiting for binding or structure. 
These are bases A816 and G817 and 
prochiral-Rp oxygens 5 '  to  nucleotides 
G817 and (2839. In agreement with our 
data, mutational analysis of the conserved 
A G C  sequence at the bottom of domain V 
showed that this sequence is required for 

activity but not  for binding (16). The  
essential nucleotides A816, G817, and 
C839 are likely to be close in space be- 
cause they are on opposite sides of the 
helix but separated by half of a helical 
turn. Thus, all components found essential 
for activity but not  for binding may be 
clustered in the tertiary structure and are 
equally required for both catalytic steps. 
Although it remains to be determined 
which elements are directlv involved in 
catalysis, these observation; suggest that 
the two steps are catalyzed by active sites 
that share at least some of their structures. 
This conclusion is not  comnatible with 
the existence of two completely separate 
active sites and is consistent with the sin- 
gle active site hypothesis (5) .  

In nuclear pre-mRNA splicing, helix I 
of the U2-U6 small nuclear RNA 
(snRNA) duplex contains highly con- 
served nucleotides and a two-nucleotide 
bulge that splits it into helices Ia and Ib. 
This helix lies just upstream of the helix 
carrying the branchpoint (intermolecular 
pre-mRNA-U2 helix, equivalent to group 
I1 domain VI). For these reasons, helix I has 
been proposed to be the spliceosomal coun- 
terpart of domain V in group I1 introns 
(17). In Ascaris U6 snRNA, a thiophos- 
phate 5 '  to G49 (G60 in yeast) located in 
the middle of the universal A G C  of helix 
Ib, totally blocked the first step (18). The 
similarity with inhibition of group I1 splic- 
ing found for thiophosphate 5 '  to G817 of 
the universal A G C  sequence at the bottom 
of domain V suggests that these conserved 
elements could be functionally related. In 
this hypothesis, the spliceosomal counter- 
part of the bottom of group I1 domain V 
would be helix Ib, and not helix Ia as 
previously proposed (1 7). 
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on a 4% acrylamide gel and run under semidenatur- 
ing cond~t~ons. 

21. For base modifications, 15 pmol of CX RNA labeled 
at the 5' end with 32P was treated with DEPC or 
hydrazine as described (9) to get less than one 
modification per molecule and annealed with 30 
pmol of complementary subunit (20). The precur- 
sor was incubated for 1 hour at 45°C in HS buffer. 
The linear intermediate was incubated 30 min at 
45°C in HS buffer with 5 FM exon 1. Gel-purified 
unreacted precursor and products were cleaved 
with aniline (9), heated 5 min at 95°C in 98% form- 
amide, and loaded on 6% sequencing gels. For 
phosphorothioate incorporations, transcriptions 
were performed in the presence of Sp phosphoro- 
thioate nucleotides (NEN) to allow an average of a 
single substitution per molecule (1 1). Splicing was 
in LS buffer [40 mM tris-CI (pH 7.51, 5 mM MgCI,, 
and 2 mM spermidine] with or without 1 mM MnCI,, 
or in HS buffer. Incubation times were adapted to 
obtain 20% of the reacted precursor in all condi- 
tions. Gel-purified fragments were cleaved with io- 
dine (1 1) before electrophoresis. 

22. A Sephadex G75 column was used for gel filtration 
with a Smart System (Pharmacia). The column had a 
volumeof 3.5 ml and aflow rate of 0.1 ml min-', and 
50.~1 fractions were collected (the first fraction was 
collected 7 min after injection). 
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