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Recent progress in the understanding of the two-dimensional electron system under the 
influence of a strong magnetic field is reviewed. This system is characterized by the 
existence of a particle called the composite fermion, which manifests itself in several 
dramatic experimental observations. 

A priori, one might expect a liquid of 
interactine electrons to  behave in a verv " 

complex manner. However, it often re- 
sembles a weakly interacting gas of parti- 
cles different from electrons, which may 
be called the quasi-particles of the system. 
A n  identification of the precise nature of 
these quasi-particles is a primary goal; it 
not only provides back-of-the-envelope 
explanations for various qualitative fea- 
tures of the svstem but also makes us feel 
that we really understand it. A well- 
known e x a m ~ l e  is that  of interactine elec- - 
trons in a normal conductor, which, as 
realized by Landau, behave like weakly 
interacting quasi-particles with the charge 
of a n  electron, e, obeying fermion statis- 
tics: this insight clarified the reason be- - 
hind the surprising success of the free elec- 
tron model. P e r h a ~ s  more dramatic are 
"strongly correlated" electron systems, 
which are described in terms of noninter- 
acting quasi-particles that are qualitative- 
ly different from electrons. A supercon- 
ductor, for example, is loosely described as 
a weakly interacting gas of boson-like 
Cooper pairs of charge 2e. 

W e  consider a two-dimensional elec- 
tron system (2DES) in the presence of a 
high transverse magnetic field, where sev- 
eral striking phenomena have been dis- 
covered during the last one and a half 
decades. In this case, the strongly cor- 
related liquid of electrons is equivalent 
to  a weakly interacting gas of particles 
called composite fermions. A composite 
fermion is a n  electron carrying a n  even 
number of vortices of the many-particle 
wave function, where a unit vortex is de- 
fined so that  a n  electron acquires a phase 
of 27r upon traversing a closed loop around 
it. Several experimental properties of the 
2DES in a range of high magnetic fields 
can be understood in a straightforward " 

manner as a consequence of the formation 
of composite fermions (at  still higher mag- 
netic fields, electrons form a crystal, 
known as the Wigner crystal, and the 
composite fermion description is n o  longer 
applicable). 
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The Quantum Hall Effect 

W e  start with a brief introduction to the 
phenomenon of the quantum Hall effect 
(QHE). T o  appreciate its dramatic nature, 
it is necessary first to understand the clas- 
sical Hall effect, discovered in 1879 (1).  
Consider a 2DES with electron density p 
and a current I, flowing along the x direc- 
tion. As a result of the Lorentz force, a 
potential difference V, develops transverse 
to the current flow, and the corresponding 
resistance, the Hall resistance, is given by 

V, B h 
R =-=--.=- 

- I, pec ve2 
(1)  

where B is the magnetic field, c is the speed 
of light, h is Planck's constant, and v is 
defined as 

The Hall effect is routinely used to deter- 
mine the type of carrier (electron or hole) 
and the carrier density. 

Almost exactly a century after the dis- 
covery of the Hall effect, von Klitzing (2)  
observed that a t  high magnetic fields there 
were regions where the Hall resistance did 
not change as a function of the magnetic 
field and the longitudinal resistance was 
exponentially small, vanishing in the limit 
T -+ 0, where T is temperature. The most 
remarkable aspect was that the Hall resis- 
tance on the plateaus was given by 

where f was found to be a n  integer; that is, 
R, was completely determined by the fun- 
damental constants h and e. This phenom- 
enon was named the integer quantum Hall 
effect (IQHE). Shortly afterwards, Tsui, 
Stormer, and Gossard (3) observed a pla- 
teau with f = 113, which was the beginning 
of the fractional quantum Hall effect 
(FQHE). By now, a large number of frac- 
tions have been observed (Fig. 1).  The  
prominent fractions appear in certain se- 
quences; some of these are 

All fractions with f < 1 have odd denomi- 
nators. As in the IQHE, the longitudinal 
resistance in the plateau region is exponen- 
tially small. 

The  observation of a dissipationless flow 
of current in a disordered nonsuperconduct- 
ing solid-state system, and of a Hall resis- 
tance that is independent of the sample 
material and geometry, is a truly remarkable 
effect. It tells us that electrons in the QHE 
regime behave in a highly cooperative but 
at the same time extremely simple manner. 
Clearly, some new physical principle is a t  
work. 

Theoretically, the quantum mechanical 
~ r o b l e m  is defined by the many-body Ham- 
iltonian 

where Ho is the kinetic energy of electrons 
in the presence of a constant external mag- 
netic field, V is the (Coulomb) interaction 
energy, me is the band mass of an electron, 
pJ is the momentum of electron j, A is the 
magnetic vector potential a t  position r, and 
E is the dielectric constant of the back- 
ground material (usually GaAs). The  elec- 
trons are confined to the xy plane. The  

Magnetic field (T) 

Fig. 1. A plot of the Hall and the longitudinal 
resistances, R,, and R,,. Note that the cutves are 
offset. [Printed with permission (3111 
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problem of a single electron in a n  external 
magnetic field was solved by Landau long 
ago (4). Its energy is quantized, given by 

where f i  = h/2a and no, = fieB/m,c is the 
cyclotron energy. Levels with different n = 

0, 1, 2, . . . are called the Landau levels 
(LLs). There are many states in each LL, 
with the degeneracy per unit area given by 
B/+o, where +o = hc/e is the quantum of 
flux. 

As usual, we start by asking how much 
can be explained if the Coulomb interac- 
tion is "switched off." Then,  in the ground 
state, the electrons occupy the lowest en- 
ergy single-particle states, with n o  more 
than one electron in each state, as re- 
quired by the Pauli principle. The  number 
of filled LLs is called the filling factor, 
given by v = p+o/B. A t  integer filling 
factors, v = n, the ground state has n LLs 
completely occupied, and there is a gap of 
no, to excitations. It was shown by Laugh- 
lin (5) that such a gap is ultimately re- 
sponsible for the IQHE. T h e  precise argu- 
ment requires a consideration of disorder 
(5) and is not repeated here. For the 
present purposes, it is taken for granted 
that  the existence of a gap in the excita- 
tion spectrum of a disorderless system a t  v 
= f results in  a plateau with R, = h/fe2. 

Because gaps are produced only at  v = 

n for noninteracting electrons, the full 
Hamiltonian with interactions must be 
considered for a n  explanation of the 
FQHE. T h e  problem can be simplified by 
considering the limit B -t 53, where the 
cyclotron energy is so large that the Cou- 
lomb interaction does not cause any LL 
mixing. In particular, for v < 1, electrons 
occupy only the lowest LL. Another sim- 
plification is that  all electrons are fully 
polarized. T h e  problem thus reduces to  
that of (effectively) spinless electrons con- 
fined to the lowest LL, with H = V (the 
kinetic energy being a n  irrelevant con- 
stant equal to  hoc /2  per electron). 

A n  earlier attempt to explain the FQHE, 
the so-called quasi-particle hierarchy 
(QPH) approach, started with the work of 
Laughlin (6), in which he  proposed a n  an- 
satz wave function to describe the correlat- 
ed electron liquid at  v = 1/(2m + 1) = 113, 
115, 117, . . ., where m is a n  integer. It was 
compared by Laughlin (6)  and others (7) 
with the exact numerical ground-state wave 
function of few electron systems and was 
found to be extremely accurate. Laughlin 
also constructed wave functions for the qua- 
si-particle excitations and made compelling 
arguments that there was a finite gap, re- 
sulting in FQHE with f = 1/(2m + 1). T o  
explain the other fractions, Haldane (8) 
and Halperin (9) proposed iterative hierar- 

chical schemes, which conjectured that 
"daughter" states occur when the auasi- " 

particles of a "parent" state themselves form 
a Laughlin-like state. For example, 113 pro- 
duced daughters at  215 and 217, which in 
turn generated 5/17, 3/11, 5/13, and 317, 
and so on. In  this step-by-step manner, the 
Q P H  scheme allows for FQHE at  all odd- 
denominator fractions starting from f = 
1/(2m + 1). 

The  Q P H  approach was somewhat spec- 
ulative and not entirely satisfactory ( 10). 
The  fact that a good description was avail- 
able for f = 1/(2m + 1) but not for the 
other fractions was puzzling; given the qual- 
itative similarity of the observations of var- 
ious fractions, one would have thought that 
once the origin of the FQHE was resolved, 
it should explain all fractions on  a more or 
less equal footing. This indicated that the 
physics of the Laughlin wave function was 
itself not fullv understood. There were sev- 
eral attempts to elucidate the relevant cor- 
relations in the Laughlin wave function. 
Girvin and MacDonald (I I ) related it, by a 
singular gauge transformation, to a boson 
wave function, which possessed algebraic 
off-diagonal long-range order. Zhang, Han- 
sson, and Kivelson (12) and Read (13) pro- 
posed a mean field theory in which the 
Laughlin wave function was viewed as a 

D 

Bose condensate. These theories, however, 
also did not shed any new light on  the other 
fractions. 

Composite Fermion Theory 

T h e  motivation of composite fermion the- 
ory (14) was to  provide a unified descrip- 
tion of the IQHE and the FQHE. Al- 
though they look qualitatively similar ex- 
perimentally, the possibility of a relation 
between them had not been contemplat- 
ed, mainly because the FQHE was be- 
lieved to be fully explainable within the 
lowest LL, whereas the IQHE clearly re- 
quired the higher LLs. O n e  of the crucial 
steps of the composite fermion theory was 
to allow the formal use of higher LLs even 
in the discussion of the FQHE within the 
lowest LL. 

The  basic hypothesis of the composite 
fermion theory is that electrons in the low- 
est LL avoid each other most efficiently by 
capturing an even number (2m) of vortices 
of the wave function and transforming into 
com~osi te  fermions. It is further assumed 
that essentially all of the Coulomb interac- 
tion is exhausted in the creation of the 
composite fermions, so that the residual 
interaction between the comuosite fermi- 
ons is relatively weak; in fact, they will be 
taken to be noninteracting for most purpos- 
es. Composite fermions move in a n  "effec- 
tive" magnetic field, because the phases 
generated by the vortices partly cancel the 

Aharonov-Bohm phases originating from 
the external magnetic field. Because a vor- " 

tex produces the same phase as a flux quan- 
tum (the Aharonov-Bohm phase associated 
with a closed loop encircling a flux quan- 
tum is also 2 a ) ,  the composite fermions can 
be crudely viewed as electrons carrying 2m 
flux quanta, and the effective magnetic 
field B* experienced by the composite fer- 
mions can be calculated by assuming that 
each electron has absorbed 2m flux quanta 
of the external magnetic field (Fig. 2). This 
yields 

The effective field B* can be either positive 
or negative. Equation 6 also implies a rela- 
tion between the electron and composite 
fermion filling factors v = p&/B and v* = 

p+,lB* 

Thus, the liquid of interacting electrons at  
B behaves like a gas of free composite fer- 
mions at  B*. The  composite fermions can, 
in general, occupy several quasi-LLs even 
when electrons are strictly confined to their 
lowest LL. As we will see below, Eqs. 6 and 
7 are sufficient for explaining most of the 
experimental observations. 

Fig. 2. (A) Electrons (dots) in a uniform magnetic 
field, with arrows representing magnetic flux 
quanta. (B) Each electron binds two flux quanta to 
become a composite fermion. Composite fermi- 
ons do not see the flux bound to them and, as a 
result, experience a smaller effective magnetic 
field; this is clear in (C), where composite fermions 
are depicted as bigger dots. 
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Numerical Studies 

The wave function of noninteracting com- 
posite fermions at v*, @$=, is constructed 
simply by taking the known wave function 
of noninteracting electrons at v*, @,,, and 
attaching 2m vortices to each electron 

Here .r, = xj + iyj denotes the position of the 
jth particle, and multiplication by the Jas- 
trow factor IIjlj,k(q - :k)2m attaches 2m 
vortices to each electron to convert it into 
a composite fermion (15). From the form of 
the wave function. it becomes intuitivelv 
clear why composite fermions might be 
formed as a result of the re~ulsive Coulomb 
interaction. Because of the Jastrow factor, 
the probability of finding two electrons 
close to each other in the state QCF is very 
small: It is proportional to r4m+2 as the 
distance between the electrons r -+ 0. De- 
spite the use of the higher LL states, @:: is 
predominantly in the lowest LL ( / 6 ) ,  and 
its lowest LL projection is identified with 
the lowest LL wave function of interacting 
electrons at v. 

A fortunate feature of the FQHE prob- 
lem is that it is possible to obtain numeri- 
cally the exact solutions in the lowest LL 
for a finite number (typically 6 to 10) of 
electrons, which provides the opportunity 
for a rigorous and unbiased test of any the- 
oretical ideas for the FQHE. The composite 
fermion theory has been compared with the 
exact solutions in great detail (1 7-1 9)  and 
shown to be remarkably successful. It has 
been found that the low-energy states of 
interacting electrons at v have the same 
quantum numbers as those of noninteract- 
ing fermions at v*, and their microscopic 
wave functions are well represented by the 
composite fermion wave functions of Eq. 8. 
In particular, filled quasi-LLs of composite 

Table 1. Overlap of the lowest LL projection of 
@$F, with the corresponding exact lowest LL Cou- 
lomb wave function at v = nl(2n i 1) (obtained 
numerically) for several values of n. The quantity N 
is the number of electrons. The wave functions 
have been properly normalized for the calculation 
of the overlap, Source (7) for 1/3, ( 7  7) for 2/5, and 
(78) for 3/7 and 2/3. 

v n N Overlap 

fermions, lv*l = n, relate to interacting 
electrons at v = nl(2mn % 1). Here, the 
ground state of interacting electrons is sep- 
arated from the other states by a gap, as 
expected from the analogy to the IQHE 
state at lv*l = n. The composite fermion 
wave functions are essentially identical to 
the true ground-state wave functions (Table 
1). Because the numerical states are exact 
and there are no adjustable parameters in 
the composite fermion theory, these studies 
make a compelling case that the low-energy 
dynamics of interacting electrons at v are 
indeed well described in terms of free com- 
posite fermions at v*. For v = 1/(2m + I ) ,  
which corresponds to one filled quasi-LL of 
composite fermions (v* = I ) ,  the compos- 
ite fermion wave function is identical to 
Laughlin's wave function. 

The FQHE 

The IQHE of composite fermions (iv*l = n) 
translates into the FQHE of electrons at v 
= nl(2mn 2 1). These are precisely the 
observed sequences of fractions. Also, only 
odd-denominator fractions are obtained, in 
agreement with experiment. The analogy of 
the FQHE of electrons to the IQHE of 
composite fermions has been extended to 
several other aspects. In low-disorder sam- 
ples, the transition from one plateau from 
another takes place at v* = n + 112 (20), as 
predicted by the composite fermion theory 
(21). This also explains the relative widths 
of various plateaus in the limit T -+ 0. 
Halperin et al. (22) interpreted the gaps of 
the nl(2mn 2 1) states as the effective 
cyclotron energy of composite fermions, 
given by heB*/m*c, where B* is given by 
Eq. 6 and m* is the effective mass of com- 

9 (T) 

Fig. 3. The resistance of an antidot superlattice, 
shown in the inset, in the vicinity of B = 0 (lower 
curve) and B* = 0 (upper curve). The scales for B 
and B* differ by a factor of G. The vertical dotted 
lines show the peaks corresponding to the small- 
est commensurate cyclotron orbit, enclosing only 
one antidot (see inset). The composite fermion 
peaks for other cyclotron orbits (for example, 
those enclosing four or nine antidots) are not seen 
presumably because of the relatively small mean 
free path of composite fermions. [Adapted from 
(29) with permission of Kang et a/.] 

Dosite fermions. Du et al. (23) found the . , 

actual gaps to be consistent with this form 
(24). Leadley et al. (25) and Du et al. (26) 
have successfully analyzed the minima and 
maxima around v = 112 in terms of the 
Shubnikov-de Haas oscillations of compos- 
ite fermions, in analogy to the Shubnikov- 
de Haas oscillations of electrons near B = 0. 
They found that the effective mass of com- 
posite fermions, for typical experimental 
systems, is roughly 50 to 100% of the elec- 
tron mass (that is, about an order of mag- 
nitude larger than the electron band mass 
in GaAs), in general agreement with the 
mass obtained from the gap measurements 
(23). All of these facts provide support to 
the picture in which the FQHE of electrons 
is viewed as the IQHE of composite fermi- 
ons. The FQHE results from the existence 
of composite fermions in the same way as 
the IQHE results from the existence of elec- 
trons, and the observation of the FQHE 
thus constitutes an  observation of the com- 
posite fermions. 

Composite Fermi Sea 

According to Eqs. 6 and 7 ,  interacting elec- 
trons at v = 1/(2m) (or B = 2mp&) are 
equivalent to noninteracting composite fer- 
mions at v* = 53 (or B* = 0). It was not 
clear for some time if the cornnosite fermion 
description remained valid here, but, moti- 
vated by certain experimental anomalies 
near v = 112 (27), Halperin, Lee, and Read 
(22) proposed that the state at v = 112 is a 
Fermi sea of composite fermions. It is anal- 
ogous to the Fermi sea of electrons at B = 0, 
with the trivial difference that the compos- 
ite fermions at B* = 0 are fully spin-polar- 
ized. whereas the electrons at B = 0 are 
spin-unpolarized. As a result, the Fermi 
wave vector of composite fermions is k; = 

fi k,, where kF is the Fermi wave vector of 
electrons at B = 0. 

Three recent experiments (28-30) have 
confirmed the existence of composite fer- 
mions in the compressible region near B* = 
0 (that is, near B = 2p4J by observing the 
cvclotron motion of comuosite fermions. As 
the magnetic field is moved slightly away 
from B* = 0. comuosite fermions are ex- 
pected to execute a cyclotron orbit with 
radius R* = fikaeB*. Because k; = f ik , ,  
the cyclotron radius of composite fermions 
at B* is equal to that of electrons at B = 
~ * / f i ;  therefore, the structures near B = 0 
and B* = O should look similar, provided 
they are plotted on scales differing by a 
factor of fi. Two of the experiments (29, 
30) were based on rather simple ideas. In 
one, Kang et al. (29) studied transport in 
antidot superlattices. The resistances near B 
= 0 and B* = 0 are shown in Fig. 3. Near 
B = 0, ueaks in the resistance occur when ' 
the cyclotron orbit is commensurate with 
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Fig. 4. The resistance R = V,,/I,, for the magnet- 
ic focusing sample shown in the inset. (A) Focus- 
ing peaks of electrons near B = 0, and (B) focus- 
ing peaks of composite fermions near B* = 0 (that 
is, near v = 1/2). The scales of B and B* differ by 
a factor of about fi. A qualitative difference be- 
tween the positive and negative B* (that is, be- 
tween v > 1/2 and v < 1/2) is evident, as is the 
one-to-one correspondence between several 
composite fermion and electron focusing peaks. 
[Reprinted from (30) with permission of Goldman 
et a/.] 

the lattice: some of the most relevant com- 
mensurate orbits are shown in the figure. 
Similar dimensional resonances of compos- 
ite fermions show up near B* = 0. Goldman 
et al. (30) observed magnetic focusing of 
comoosite fermions near v = 112. The ex- 
peri&ental setup is shown in Fig. 4.; the 
current flows from 1 to 2, and the voltage is 
measured between 3 and 4. Near B = 0, a 
number of quasi-periodic peaks are observed 
(Fig. 4B), which occur at those values of B 
where the electrons coming straight out of 
the left constriction are focused into the 
right constriction, possibly after several 
specular reflections from the gate. Similar 
quasi-periodic structure was observed near 
B* = 0 (Fig. 4A). The close correspon- 
dence between the electron and the com- 
posite fermion peaks is evident in both Figs. 
3 and 4. These experiments confirm the 
existence of comoosite fermions in the 
compressible region near v = 112 by dem- 
onstrating that the dynamics of the charge 
carriers are described by the effective field 
B* rather than the external field B. Thus, 
the composite fermion framework has not 
only provided a simple "one-step" explana- 
tion of the FQHE, it has also helped reveal 
the nontrivial nature of the metallic state at 
even-denominator fractions. 

Conclusion 

The  following picture has finally emerged. 
First, electrons form LLs because of quan- 
tization of their kinetic energy. This re- 
sults in the IQHE. Within the lowest LL, 
in a range of filling factor, electrons min- 
imize their interaction energy by capturing 
vortices and transforming into composite 
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The Sverdlovsk Anthrax 
Outbreak of 1979 

Matthew Meselson,* Jeanne Guillemin, Martin Hugh-Jones, 
Alexander Langmuir,? Ilona Popova, Alexis Shelokov, 

Olga Yampolskaya 

In April and May 1979, an unusual anthrax epidemic occurred in Sverdlovsk, Union of 
Soviet Socialist Republics. Soviet officials attributed it to consumption of contaminated 
meat. U.S. agencies attributed it to inhalation of spores accidentally released at a military 
microbiology facility in the city. Epidemiological data show that most victims worked or 
lived in a narrow zone extending from the military facility to the southern city limit. Farther 
south, livestock died of anthrax along the zone's extended axis. The zone paralleled the 
northerly wind that prevailed shortly before the outbreak. It is concluded that the escape 
of an aerosol of anthrax pathogen at the military facility caused the outbreak. 

A n t h r a x  is an acute disease that primarily 
affects domesticated and wild herbivores 
and is caused by the spore-forming bacteri- 
um Bacillus anthracis. Human anthrax re- 
sults from cutaneous infection or, more 
rarelv, from ingestion or inhalation of the , . - 
pathogen from contaminated animal prod- 
ucts ( 1 ) .  Anthrax has also caused concern 
as a possible agent of biological warfare (2). 

Early in 1980, reports appeared in the 
Western press of an anthrax epidemic in 
Sverdlovsk, a city of 1.2 million people 
1400 km east of Moscow (3, 4). Later that 
year, articles in Soviet medical, veterinary, 

and legal journals reported an anthrax out- 
break among livestock south of the city in 
the spring of 1979 and stated that people 
developed gastrointestinal anthrax after 
eating contaminated meat and cutaneous 
anthrax after contact with diseased animals 
(5-7). The  epidemic has occasioned intense 
international debate and speculation as to 
whether it was natural or accidental and, if 
accidental, whether it resulted from activi- 
ties prohibited by the Biological Weapons 
Convention of 1972 (8). 

In 1986, one of the present authors 
(M.M.) renewed previously unsuccessful re- 
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