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The venom of the funnel-web spider Agelenopsis aperta contains several peptides that present in one of these toxins was found by 
paralyze prey by blocking voltage-sensitive calcium channels. Two peptides, o-Aga-IVB treatment of each toxin with Glu-C (7). 
(IVB) and o-Aga-IVC (IVC), have identical amino acid sequences, yet have opposite The  NH2-terminal native fragments in  each 
absolute configurations at serine 46. These toxins had similar selectivities for blocking case coeluted on  HPLC, whereas the 
voltage-sensitive calcium channel subtypes but different potencies for blocking P-type COOH-terminal peptides (Gly-Leu-Ser- 
voltage-sensitive calcium channels in rat cerebellar Purkinje cells as well as calcium-45 Phe-Ala48) were easily distinguished. Pen- 
influx into rat brain synaptosomes. An enzyme purified from venom converts IVC to IVB tapeptides containing both D- and L-serine 
by isomerizing serine 46, which is present in the carboxyl-terminal tail, from the L to the were synthesized (7). Coinjection studies 
D configuration. Unlike the carboxyl terminus of IVC, that of IVB was resistant to the major showed that the fragment generated from 
venom protease. These results show enzymatic activities in A. aperta venom being used native IVC'contains a n  L-serine residue and 
in an unprecedented strategy for coproduction of necessary neurotoxins that possess that the fragment from native IVB contains 
enhanced stability and potency. a D-serine residue ( 15). 

Synthesis of the full-length toxins was 
required to rigorously establish the identity 
of the toxin diastereomers arising from D- 
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ity and refine their biological activity (1). three-step procedure described in detail responding Ser46 diastereomers when coin- 
Many of these toxins are useful pharmaco- elsewhere (7). The  toxins possess identical jected (17). 
logical tools, such as those targeting volt- sequences (8),  a COOH-terminal acid (9), The  most characteristic activity of the 
age-dependent Ca2+ channels (2, 3). Stud- and the same disulfide bonding pattern (7, o-Aga-IV class of toxins is a blockade of 
ies of Ca2+ channels have focused on  L-, 10). Reversed-phase high-pressure liquid P-type Ca2+ channels in rat cerebellar Pur- 
N-, and P-type channels; however, the ex- chromatography (rpHPLC) studies showed kinje cells (6, 13, 14). A n  important differ- 
istence of additional subtypes has been that the two toxin fractions were unique ence in toxin potency was demonstrated for 
shown by electrophysiology and molecular entities, because equimolar single injections native IVB and IVC (18). A direct same- 
cloning (4). The  spider toxin o-Aga-IVA (Fig. 1, A and C )  or coinjections (Fig. 1B) cell comparison of toxin activity showed 
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current more rapidly at 32 nM than does 
IVC (Fig. 2). Dose-response studies showed 
an approximately fourfold difference in po- 
tency, with the more potent toxin bearing 
the ~ - S e r ~ ~  residue [Fig. 2C; the inhibition 
concentration (IC,,) of IVB = 9.6 nM; 
IC,,(IVC) = 36.4 nM]. The predominant 
voltage-dependent Ca2+ channels found in 
rat brain synaptosomes, such as the P-chan- 
nel in Purkinje cells, are refractory to the 
N-channel antagonist o-conotoxin GVIA 
(<lo% block at 1 pM; Fig. 3) and the 
L-channel antagonist nimodipine (17.3 +- 
7.0% inhibition at 3 pM, mean + SEM, n 
= 3) (19). Whereas 1 pM IVB maximally 
blocked 85% of the voltage-dependent flux, 
3 IJ,M IVC only blocked 67.5% of the flux. 
In a dose-response experiment, the ~ - S e r ~ ~  
analog displayed a fivefold greater potency 
than did the L-serine counterpart 
[IC,,(IVB) = 24.8 nM; IC,,(IVC) = 139 
nM] (20). Electrophysiological recordings 
from rat cerebellar Purkinje cells that used 
synthetic toxins at 32 nM mirrored those 
made from cells treated with native toxins 
at similar concentrations (Fig. 2). Consid- 
ering the variability of the recordings and 
the quantification of toxin peptides, a good 
correlation exists between the differences in 
potency and time course of the blockade of 
native toxins and those of synthetic toxins. 
These data further support the structure 
assignments given. 

Crude A. aperta venom converted IVC to 
IVB. Isomerase activity was reduced by dilu- 
tion of venom with phosphate-buffered sa- 
line (PBS) and was abolished by heat treat- 
ment (at 100°C for 30 min). Isomerization 

Fig. 2. Comparison of the 
block by IVB and IVC of P- 
type calcium currents. (A) 
Time course of the inhibition 
of P-channel currents in a 
single Purkinje cell. IVB 
blocked the current faster 
and more efficiently than did 
the same concentration of 
IVC during the peptide appli- 
cation periods shown by 
open bars (for 32 nM native 
IVB, inhibition = 81 + 5% 
and T~~~~~ = 7.6 + 2.7 min; 
for 32 nM native IVC, inhibi- 
tion = 39 2 8% and T,,,, = 
32.8 + 12.7 min for five 
same-cell experiments). Im- 
mediately after the cessation 
of peptide application, con- 

experiments using a crude size fraction (> lo  
kD) were difficult to interpret, because IVC 
was degraded at a rate comparable to that of 
isomerization. The enzyme predominantly 
responsible for the degradation of IVC was 
likely a neutral endopeptidase, because the 
proteolytic activity was greatly reduced by 
EDTA, reactivated by ZnCl,, and inhibited 
by phosphoramidon; and it hydrolyzed small 
model peptides at a predicted enkephali- 
nase cleavage site (21 ). Although isomer- 
ization could be carried out in the pres- 
ence of EDTA, venom was fractionated on 
a Sephadex G-75sf gel column to purify 
the desired isomerase activity (22). Gel 
filtration was used to separate venom con- 
stituents, and SDS-polyacrylamide gel 
electrophoresis (PAGE) (Fig. 4) showed 
that fractionation of three maior high mo- - 
lecular mass components was achieved. As 
was consistent with molecular mass mark- 
ers, lanes 3, 7, and 9 (Fig. 4) contained 
proteins of mass 86,470 daltons, 36,589 
daltons, and 29,469 daltons, respectively, 
as determined by mass spectrometry (23). 
No detectable enzvmatic activitv existed 
in fraction 7, whereas protease (24) and 
isomerase action were found in fractions 3 
and 9, respectively. Fractions 9 to 11 were 
used to evaluate the isomerization of IVC 
to IVB and of IVB to IVC (25). Time 
course experiments (Fig. 5) qualitatively 
showed that the conversion of IVC to IVB 
was slightly faster than the reverse reac- 
tion, yet the reaction appeared to be rath- 
er slow in both directions. However, ex- 
tended reactions times did produce a prod- 
uct ratio approaching 50:50. Enzyme and 
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trol medium was applied to 
the cell through microcapillary tubes, and a series of depolarizing steps was applied to enhance the rate 
of toxin washout (5). (B) Whole-cell currentsfrom the experiment shown in (A). (C) Dose-response relation 
of the block by IVB (filled circles) and IVC (open circles) of high-threshold currents in rat Purkinje cells. The 
solid curves are best fit of F = 1/(1 + [peptide]/lC,,), with IC,, = 9.6 nM for IVB and 36.4 nM for IVC (F, 
fraction of control current). Each point represents the mean of data from five to eight cells. (D) Whole-cell 
currents from a cell treated with synthetic toxins (for 32 nM synthetic IVB, inhibition = 94 2 0.6% and 
T~~~~ = 2.1 + 0.6 min; for 32 nM synthetic IVC, inhibition = 58 + 7.5% for five same-cell experiments and 
T~~~~ = 17.5 + 2.9 min for the same-cell experiments). 

substrate concentrations in these experi- 
ments were -2.3 and 15.8 pM, respec- 
tively, whereas the predicted concentra- 
tions in venom are -42 and 750 pM, 
respectively. Therefore, one might expect 
the isomerization velocity in venom to be 
nearly 1000 times greater than was seen in 
these experiments. 

The three-dimensional structure of IVB 
shows a cysteine-rich densely packed core 
with a flexible extended tail composed of the 
COOH-terminal 12 amino acids (10). An 
IVA congener isolated from venom lacking 
the final two amino acids was about six times 
less potent than was full-length toxin in 
blocking P-type channels in rat Purkinje 
cells. It is logical that this peptide arises from 
the proteolytic action of a neutral endopep- 
tidase on IVA, because the five C O H -  
terminal amino acids found in this peptide 
are Gly-Leu-Gly-Leu-Ala48. Further demon- 
stration of the importance of the C O H -  

Fig. 3. Dose-response curves for the blockade of 
45Ca2+ flux by peptide toxins in rat brain synapto- 
somes. Synaptosomes were prepared as de- 
scribed in (6) and studies were carried out as de- 
scribed in (20). Circles, IVB; squares, IVC; and 
triangle, o-conotoxin GVIA. 

Fig. 4. Linear 5 to 15% SDS-PAGE gel. Lanes 2 to 
13 are fractions taken from a G-75sf Sephadex 
column (see 22). Lanes 2 to 5 contain purified 
protease (-80 kD) and lanes 9 and 10 contain 
purified racemase (-30 kD). Lanes 1, 14, and 15 
are molecular mass standards; from top to bot- 
tom, they are myosin (200 kD), Escherichia coli- 
galactosidase (1 16 kD), rabbit muscle phorphy- 
lase b (97.4 kD), bovine serum albumin (66.2 kD), 
hen egg white ovalbumin (45 kD), and bovine car- 
bonic anhydrase (31 kD). 
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REPORTS 

terminal tail to activity was obtained by 
removal of the last eight or nine amino acids 
of IVB or IVC with thermolysin (19). Trun­
cation produced toxins that were entirely 
devoid of P-channel activity in Purkinje 
cells. It can therefore be concluded that in­
teraction of the COOH-terminal tail with 
the target channel is essential for high-po­
tency blockade. The isomerase activity, 
which operates exclusively on Ser46, protects 
the COOH-terminus of the toxin from deg­
radation while affording a three- to fivefold 
increase in potency. Enhanced stability may 
explain why IVB is two to four times more 
abundant in venom than are the other tox­
ins of its class. 

Incorporation of D-amino acids into eu-
karyotic proteins is rare. Notable examples 
are the opioid peptides (such as dermor-
phins), which are found in the secretions of 
frog skin (26), Although it is apparent that 
an enzymatic activity is involved, the timing 
and mechanism by which the frog manipu­
lates the configuration of a specific internal 
amino acid are not clear (27), The isomerase 
activity in A. aperta venom is distinguished 
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Fig. 5. (A) Isomerization of IVC to IVB. (B) Isomer-
ization of IVB to IVC; 200 IJLI (derived from 20 |JLI of 
crude venom) of A. aperta fraction 9 (G-75sf 
Sephadex) in PBS (pH 7.4). Chromatography was 
done on a C-18 Vydac column (4.6 x 250 mm) 
with a particle size of 5 |jim and a pore size of 300 
A. Flow rate was 1 ml/min; detection occurred at 
220 nm. The gradient was A = 0.1 % TFA-H20, B 
= acetonitrile. The concentration of B was 25 to 
35% over 40 min, then 35% for 10 min. Time 
range: 23 to 35 min. Sample size: ~ 5 |xg. 

from that of other cofactor-independent 
racemases (28, 29). The spider isomerase 
operates on an intact peptide rather than 
on a free amino acid and may require 
specific flanking residues to operate effi­
ciently. Therefore, in a strict sense the 
enzyme is not a racemase, because it cat­
alyzes the interchange of two diaste-
reomers, not enantiomers. 

The favored mechanism for cofactor-in­
dependent racemases, which may be opera­
tive here, is a two-base model in which a pair 
of cysteine residues removes the a proton 
and subsequently reprotonates the interme­
diate from the opposite face (28, 29), A 
different pathway might include dehydroala-
nine as the central intermediate in a diaste-
reoselective dehydration-rehydration pro­
cess. Alternatively, isomerization could pro­
ceed by means of a mechanism related to 
serine hydroxymethylase (30), in which the 
formaldehyde equivalent generated is not 
scavenged by tetrahydrofolate but instead 
is trapped by the reactive intermediate 
from the opposite face to produce the D 
configuration. 

Neutral endopeptidases have been de­
scribed in insects (31), Enkephalin immuno-
reactivity and specific binding in insect ner­
vous tissue has been reported (31,32), More­
over, a role for enkephalins in modulating 
locomotor activity in invertebrates has been 
described (33), These data suggest a role for 
a soluble enkephalinase as a neurotoxic con­
stituent in venom. Additionally, the endo-
peptidase could serve as an essential activity 
for toxin maturation or as a selection mech­
anism to enrich the venom in enkephali-
nase-resistant toxins produced by the serine 
isomerase. The isomerization of IVC to IVB 
not only enhances toxin stability to such 
protease activity but also confers increased 
potency at specified physiological targets. 
These toxins naturally target channels found 
in invertebrate tissue. Although the toxin 
activity measured here uses mammalian tis­
sues, the first channel cloned from an inver­
tebrate (34) is highly homologous to mam­
malian counterparts. Identification of the 
invertebrate channel subtype to which class 
IV toxins are directed will require additional 
cloning and functional expression. 
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Spermine and Spermidine as Gating Molecules 
for Inward Rectifier K+ Channels 

Eckhard Ficker, Maurizio Taglialatela, Barbara A. Wible, 
Charles M. Henley, Arthur M. Brown* 

Inward rectifier Kt channels pass prominent inward currents, while outward currents are 
largely blocked. The inward rectification is due to block by intracellular Mg2+ and a 
Mg2+-independent process described as intrinsic gating. The rapid loss of gating upon 
patch excision suggests that cytoplasmic factors participate in gating. "Intrinsic" gating 
can be restored in excised patches by nanomolar concentrations of two naturally oc- 
curring polyamines, spermine and spermidine. Spermine and spermidine may function as 
physiological blockers of inward rectifier K+ channels and "intrinsic" gating may largely 
reflect voltage-dependent block by these cations. 

G a t i n g  of voltage-dependent ion channels 
is generally thought to be an intrinsic prop- 
erty of the channel protein (1).  However, 

E. Ficker and B. A. Wible, Department of ~olecular phis- 
iology and Biophysics, Baylor College of Medicine, One 
Baylor Plaza, Houston, TX 77030, USA, 
M. Taglialatela, Department of Neurosciences-Section 
of Pharmacology, Second School of Medicine, University 
of Naples "Federico 1 1 , "  5 Vla S, Pansini, 80121 Naples, 
Italy. 
C. M. Henley, Department of Otorhinolaryngology, Baylor 
College of Medicine, One Baylor Plaza, Houston, TX 
77030. LISA. . . - , - - . 

A. M. Brown, Rammelkamp Center, Metro Health Sys- 
tem, and Department of Physiology, Case Western Re- 
serve Unlversitv, Cleveland, OH 441 09-1 998. USA. 

*To whom correspondence should be addressed. 

gating may be specifically modified by ac- 
cessory proteins (p subunits) (Z), small or- 
ganic molecules (for exam~le .  adenosine - . , 

triphosphate) ( 3 ) ,  or inorganic cations such 
as Ca2+ or Mg2+ (4-6). The  intrinsic gat- 
ing of inward rectifier K+ channels (IRKs) 
(6,  7) is thought to contribute to inward 
rectification by producing closure of chan- 
nels a t  depolarized potentials, resulting in 
negligible outward currents even in the ab- 
sence of intracellular Mg2+ (Mgzt). Con- 
versely, reopening of channels at hyperpo- 
larized potentials is thought to cause the 
time-dependent onset of inward currents. 
Two IRKs, IRK1 (8) and ROMKl (9), ex- 
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