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lden tif ication of Two GTP-Binding Proteins in the 
Chloroplast Protein Import Machinery 

Felix Kessler, Giinter Blobel, Hitesh A. Patel, Danny J. Schnell* 

Two of four proteins that associated with translocation intermediates during protein import 
across the outer chloroplast envelope membrane were identified as guanosine triphos- 
phate (GTP)-binding proteins. Both proteins are integral membrane proteins of the outer 
chloroplast membrane, and both are partially exposed on the chloroplast surface where 
they were accessible to thermolysin digestion. Engagement of the outer membrane's 
import machinery by an import substrate was inhibited by slowly hydrolyzable or non- 
hydrolyzable GTP analogs. Thus, these GTP-binding proteins may function in protein 
import into chloroplasts. 

A t  least six distinct chloroplast envelope 
proteins are specifically engaged by a pro- 
tein import substrate during its transloca- 
tion across the two membranes of the en- 
velope in an in vitro chloroplast import 
system ( 1 ) .  These proteins, referred to as 
IAPs (import intermediate-associated pro- 
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teins), coisolated specifically and in appar- 
ently stoichiometric amounts with tagged 
import intermediates after detergent solubi- 
lization of an envelope subfraction of chlo- 
roplasts. A subset of four of these IAPs, 
referred to as early IAPs, are specifically 
engaged by early import intermediates and, 
therefore, are proposed to represent compo- 
nents of the outer membrane (OM) import 
machinery ( I  ). 

We have characterized two of these early 
IAPs, IAP34 and IAP86. These two pro- 
teins are indeed integral proteins of the 
outer chloroplast membrane, and both pro- 
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teins are GTP-binding proteins. Consistent 
with a role of these two GTP-binding pro- 
teins in protein import, we found that non- 
hydrolyzable GTP analogs inhibited en- 
gagement of the outer membrane's import 
machinery by the import substrate. 

We obtained partial amino acid sequence 
data from IAP34 and used oligonucleotide 
probes to obtain an IAP34 complementary 
DNA (cDNA) clone (2). The deduced ami- 
no acid sequence (Fig. 1) revealed a protein 
with a calculated molecular size of 34,064 
daltons. Analysis of the primary structure 
showed the presence of consensus motifs for 
a GTP-binding site (Fig. 1) (3) in an other- 
wise unique sequence when compared to the 
available protein sequences in the data 
banks. 

IAP34 is indeed a GTP-binding protein. 
When it was expressed in Escherichia coli (4) ,  
resolved by SDS-polyacrylamide gel electro- 
phoresis (PAGE), transferred to nitrocellu- 
lose blots, and incubated with [CX-~~PIGTP, 
there was specific labeling of IAP34 that was 
not competed by incubation with adenosine 
triphosphate (ATP) but was competed by 
unlabeled GTP (Fig. 2). 

In vitro synthesis of IAP34 mRNA in a 
wheat germ cell-free translation system 
yielded a single band that comigrated with 
mature IAP34 (5) indicating that IAP34 is 
not synthesized as a larger precursor. To 
investigate the mechanism of integration 
of IAP34 into the outer chloroplast mem- 
brane, the translation mixture was deplet- 
ed of ATP and then incubated with chlo- 
roplasts either in the presence of ATP or 
in the absence of ATP and in the presence 
of apyrase. Chloroplasts were then reiso- 
lated and a fraction containing all of the 
envelope proteins was analyzed by SDS- 
PAGE and autoradiography. Integration 
of IAP34 into the outer chloroplast mem- 
brane required neither ATP nor thermo- 
lysin-sensitive components of the import 
machinery (Fig. 3A). There was as much 
uptake of IAP34 into chloroplasts in the 
absence of ATP as there was in the pres- 
ence of ATP (Fig. 3A); and incubation of 
chloroplasts with thermolysin did not af- 
fect uptake of IAP34 (Fig. 3A). IAP34 was 
apparently associated with the outer chlo- 
roplast membrane because it was largely 
recovered in the OM fraction of subfrac- 
tionated chloroplasts (Fig. 3C). Moreover, 
IAP34 was integrated into the outer mem- 
brane in a manner resistant to alkali ex- 
traction independently of whether ATP 
was present in the import reaction; or 
whether chloroplasts were incubated with 
thermolysin before import (Fig. 3B). 
These results are consistent with the im- 
port characteristics of other outer mem- 
brane proteins (6, 7). IAP34 integrated 
into the chloroplast membrane was de- 
graded by incubation of chloroplasts with 

thermolysin (Fig. 3A) indicating that a single hydrophobic region (residues 267 to 
majority of the protein is accessible on the 283) that conforms to a predicted alpha 
chloroplast surface. The deduced amino helical transmembrane segment (8). If this 
acid sequence of IAP34 (Fig. 1) contains a sequence does represent the membrane 

W E T R D V G D R K  310 

Fig. 1. Deduced amino acid sequence of IAP34 cDNA (2). Residues corresponding to the putative 
transmembrane domain (8) are indicated by a broken underline. Residues corresponding to peptide 
sequence obtained from IAF'34 are indicated by the solid underlines. The residues corresponding to 
conserved motifs of known GTP-binding proteins (3) are indicated in bold type. The GenBank accession 
number for the IAP34 cDNA is L36856. 

Fig. 2 GTP binding by IAP34. A DNAfragment encompassing the GTP (lrM) - * 

entire IAP34 coding region of pBS-IAP34 (2) was inserted into - 1 0 1  
pET2ld (Novagen, Inc.) under the control of the inducible 010 - - .  -T 
promoter. The resulting plasmid, pET21d-IM, was introduced 
into E. coli BL21 (DE3). Expression of IAP34 was induced by ? 
isopropylthio-p-gahctoside (IPTG), and IAP34 was recovered in 
an insoluble fraction containing inclusion bodies (14). Proteins in ; ? 

9 
this fraction (containing approximately 1 pg of recombinant IAP34) IAP34 + - = m *  
were resolved by SDS-PAGE and transferred to nitrocellulose 
fitters. GTP binding was assayed by a modification of the method e 

of Bhullar and Haslarn (15). Briefly, the filters containing E. coli- . * .  -. 
expressed IAP34 were incubated in 50 mM tris-HCI (pH 7.5), 50 
pM MgCI2, 0.3% Tween-20,5 nM [a-32P]GTP (3000 Cimmol) for 
2 hours at 4OC in the absence or presence of ATP or GTP as 

1 2 3  4 

indicated. After the incubation, the filters were washed five times in 50 mM tris-HCI (pH 7.5), 5 mM MgCI,, 
0.3% Tween-20 at 4°C and exposed to Kodak XAR-5 film with intensifying screens for 18 hours. No 
[a-32P]GTP binding was observed in extracts from E. coli containing the pET2l d vector alone (5). 

Fig. 3. Import of IAP34 into the outer envelope A A T P . + -  + - +  
membrane of isolated chloroplasts. (A) IJ5SJIAP34 Apyrase + . + . + - 
was synthesized in a wheat germ extract (16).  re T-lysin - - - - + + 
Import of pSJIAP34 was assayed in a standard Post T-lysin - - + + - - --- - import reaction (7 7) containing ATP-depleted 
chloroplasts (16). The import reactions contained import 
2 mM MgATP (+ATP) or 15 U of the ATP-con- 
suming &me, apyrase (+Apyrase). Where indi- 
cated, chloroplasts were treated wth thermolysin 1 2 3  4 5 6 7  
before (Pre T-lysin) or after (Post T-lysin) the im- 
port reaction (18). After import and protease treat- B 

\\ / /  
w 

ment, the chloroplasts were reisolated and sepa- pH 11.5 ---- 
rated into membrane and stromal fractions (19). 
The membrane fractions were analyzed by SDS- 1 2 3 4  

PAGE and fluorography. Lane 7 contains a portion 
of the pSJIAP34 equivalent to 10% of that added 3 
to each import reaction. (B) The chloroplast mem- a S 
brane fractions corresponding to lanes 1, 2, 5, E 2 2 
and 6 of (A) were treated with 0.1 M NqCO, (pH C B s G E  
11.5) as described (1). The membranes were re- r a n - -  
covered by centrifugation and analyzed by SDS- C h l o r o ~ t  

distribution - 
PAGE and fluorography. (C) Chloroplasts corre- 
sponding to lane 2 of (A) were reisolated after 
import, diluted with unlabeled chloroplasts (equiv- 1 2 3 4  

alent to 1 nlg of chlorophyll) and fractionated into envelope, thylakoid and stromal components by lysis 
and flotation into linear sucrose gradients (20 to 38%) as described (1). Proteins from outer envelope 
membranes (OM), inner envelope membranes (IM), stromal extract (Stroma), and thylakoid membranes 
(Thylakoid) were analyzed by SDS-PAGE and fluorography to determine the distribution of imported 
pSJIAP34. Each lane contains 5 pg of protein. 
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anchor for IAP34, IAP34 is likely to be 
oriented with the short COOH-terminal 
segment in the intermembrane space and 
the large NH2-terminal domain (including 
the GTP-binding site) extending into the 
cytosol. 

We obtained amino acid sequence dam 
from IAP86 and corresponding cDNA 
clones (2). The deduced amino acid se- 
quence showed a protein of 96,685 daltons 
(Fig. 4A). This size is considerably larger 
than that estimated from the mobility of 
IAP86 on SDS-PAGE (86 kD). The amino 
acid sequence obtained from one peptide 
derived from IAP86 includes the COOH- 
terminal amino acid of the deduced IAP86 
sequence (Fig. 4A). Therefore, the primary 
translation product of IAP86 might be pro- 
teolytically processed at its NH,-terminus 
to yield the mature protein. Like IAP34, 

IAP86 contains consensus motifs for a 
GTP-binding site (3). Except for the GTP- 
binding site motif, IAP86 lacks similarity to 
other protein sequences in the data banks. 
However, it does share sequence similarity 
with IAP34 outside of the GTP-binding site 
motif (Fig. 4B). 

To confirm the location of IAP86 in the 
outer chloroplast membrane, we obtained 
antibodies to IAP86 (anti-IAP86) (9). 
When chloroplasts were subfractionated, 
anti-IAP86 reacred specifically with an 86- 
kD polypeptide that was present in the light 
outer membrane fraction and to a much 
lesser extent in the inner membrane frac- 
tion (probably because of outer membranes 
attached through contact sites) but was not 
detectable in the thylakoid or stroma frac- 
tions (Fig. 5). 

To determine whether IAP86 is a GTP- 

A 

M D D G S H V E A A V D H H I D R E I D D L L S D  25 
S K D E S M I F G G S D S A N K Y L E E L E K Q I  50 
R D S E . S S Q G D R I D G Q I V T D S D E E D V S  75 
D E E G G S K E L F D T A T L A A L L K A A S G A  100 
G G E D G G G I T L T A Q D G S R L F S V E R P A  125 
G L G P S L Q T G K P A V R S I R P N L F A P S M  150 
S R A G T V V S D T D L S E E D K K K L E K L Q E  175 
I R I K Y L R V I Q R L G F T T E E S I A A Q V L  200 
Y R L T L V A . G R 0 I G E M F S L D A A K E S A S  225 
R L E A E G R D D F A F S L ~ I L V L Q K T Q V Q  250 
K S A T I N S I F G E T K T S F S A Y G P A T T S  275 
V T E I V G M V D G V E I R V P D T P Q L K S S A  300 
F E Q S Y N R K V L S T V K K L T K K S P P D I V  325 
L Y V D R L D L Q T R D M N D L P M L R S V T S A  350 
L G P T I W R N V I V T L T H A A S A P P D E Q Q  375 
G S P L S Y D V F V A Q R S H I V Q Q A I G Q A V  400 
G D L R L M N P N L M N P V S L V E N H P S C R K  425 
N R D G O K V L P N G O S W K P L L L L L C Y S M  450 
K I L S ~ A T N I S K T Q E A A D N R R L F G F R  475 
S R A P P L P Y L L S W L L Q S R A H P K L P D Q  500 
A G I D N G D S D I E M A D L S D S D G E E G E D  525 
E Y D Q L P P F K P L K K S Q I A K L N G E Q R K  550 
A Y L E E Y D Y R V K L L Q K K Q W R E E L K R M  575 
R D M K K R G K N G E N D Y M E E D E E N G S P A  600 
A V P V P L P D M V L P O S F D S D N P A Y R Y R  625 
F L E P N S Q L L T R P V L D T H S W D H D C G Y  650 
D G V N I E N S M A I I N K P P A A V T V O V T K  675 
D K Q D F S 1 H L D S S V A A K H G E N G S T M . A  700 
G F D I Q N I G K Q L A Y I V R G E T K F K N F K  725 
R N K T A A G V S V T F L G E N V S T G V K L E D  750 
Q I A L G K R L V L V G S T G T V R S Q N D S A Y  775 
G A N V E V R L R E A D F P V G Q D Q S S L S L S  800 
L V O W R G D L A L G A N F O S O I S L G R S Y K  825 

Fig. 4. Deduced amino acid sequence of IAP86 cDNA (2) and its comparison to IAP34. (A) Deduced 
amino acid sequence of a cDNA corresponding to IAP86. Residues corresponding to peptide se- 
quence obtained from IAP86 are indicated by the solid underlines. The GenBank accession number 
for the IAP86 cDNA is L36857. (B) Alignment of the deduced amino acid sequences of IAP34 and 
IAP86. Identical amino acids are indicated by bars. Consewed amino acids are indicated by asterisks. 
The residues corresponding to consewed motifs of known GTP-binding proteins (3) are indicated as 
bold type. 

binding protein, an isolated OM fraction 
was incubated with [a-3ZP]GTP and sub- 
jected to crosslinking with ultraviolet (UV) 
light in the absence or presence of ATP or 
GTP. An 86-kD polypeptide was labeled 
specifically; labeling was diminished in the 
presence of unlabeled GTP but not in the 

Fig. 5. Distribution of IAP86 in o 
the chloroplast envelope mem- : - E 
brane. Isolated chloroplasts g 
(equivalent to 10 mg of chloro- 
phyll) were fractionated into en- - 
velope, thylakoid, and stromal 
components by lysis and flota- 
tion into linear sucrose gradi- 
ents (20 to 38%) as described 
(1). Proteins of gradient frac- 
tions containing outer envelope 
membranes (OM), inner enve- 
lope membranes (IM), stromal * 
extract (Stroma), and thylakoid 
membranes (Thylakoid) were resolved by SDS- 
PAGE transferred to nitrocellulose and immuno- 
blotted with anti-W86 (9). Each lane contains 10 
pg of protein. 

A ATP(pM)- . - 1 1 )  
GTP (pM)- 1 10 . . B i?! a 

31.0- 
I ***H 
.4 

3 4 5  

Fig. 6. GTP binding by IAP86. Purified outer enve- 
lope membranes (0.5 mg of protein) (1) were incu- 
bated for 5 min on ice in a total volume of 1 ml 
containing 50 mM tris-HCI (pH 7.5), 100 pM 
MgCb, 50 nM [U-~~PIGTP (3000 Cimrnol) in the 
absence or presence of ATP or GTP as indicated. 
After incubation, the samples were irradiated at 
366 nm with a hand-held W lamp (WP model 
UVL 56) at a distance of 5 cm for 10 min. The 
irradiated membranes were diluted with a large 
volume of buffer excluding [U-~~PIGTP and recov- 
ered by centrifugation at 200,0009 for 1 hour at 
4°C. (A) [a-32P]GTP-crosslinked outer envelope 
membrane proteins were analyzed by SDS-PAGE 
and autoradiography. Each lane contains 10 pg of 
protein. The position of W86 is indicated by the 
mows. (B) [a-32P]GTP-crosslinked outer enve- 
lope membranes (1 0 pg of protein) correspond- 
ing to lane 5 of (A) were solubilized in SDS and 
incubated with affinity-purified anti-IAP86 or im- 
munoglobulin G defied from preimmune serum 
(PI) in a standard immunoprecipitation reaction 
(20). The immunoprecipitates were analyzed by 
SDS-PAGE and autoradiography. Lane 1 con- 
tains [a-32P]GTP-crosslinked outer envelope 
membranes equivalent to 50% of that used in 
each immunoprecipitation reaction. The molec- 
ular sizes of standard proteins in kilodaltons are 
indicated at the left of (A). 
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engagement of the precursor with the im- 
port machinery in the outer membrane. To 
detect a GTP requirement in the early 
phase of import, we incubated urea-dena- 
turd  import substrate with chloroplasts in 
the absence or presence of GTP or GTP 
analogs. The chloroplasts were then reiso- 
lated and bound precursors were detected 
by SDS-PAGE and autoradiography. There 
was a small amout of binding in the ab- 
sence of nucle tides, and there was consid- 9. erable binding m the presence of 0.1 mM 
ATP alone, whetieas in the presence of only 
GTP there was little binding (Fig. 8). More- 
over, in the presence of both ATP and 
GTP, binding was only slightly higher than 
in the presence of ATP alone. These data 
confirmed the requirement of binding for 
ATP (1 2, 13), but they were equivocal with 
regard to a requirement for GTP. However, 
a requirement for GTP in the binding pro- 
cess became clearly evident when either 
guanosine-5'-[thiol-triphosphate (GTP-y- 
S) or guanosine-5'-[P,y-imidoltriphosphate 
(GMP-PNP) (5) was added together with 
0.1 mM ATP (Fig. 8). Both GTP analogs 

inhibited binding of precursors to the chlo- 
roplast outer membrane. The inhibition by 
GMP-PNP suggests that the binding reac- 
tion requires GTP hydrolysis. The binding 
reaction may still occur in the absence of 
added GTP because sufficient amounts of 
GTP might be contributed to the reaction 
either by the chloroplasts themselves 
(IAP34 and IAP86 may contain bound 
GTP) or with the added ATP (which might 
be contaminated by small amounts of 
GTP). 

IAP34 and IAP86 may function in reg- 
ulating presentation of the transit sequence 
of chloroplait precursors to the outer mem- 
brane protein conducting channel through 
a GTP-binding and hydrolysis cycle (I). In 
this scenario, IAP34 or IAP86 could func- 
tion by directly interacting with the transit 
sequence (as import receptors) or by regu- 
lating the interactions of other IAPs that 
bind directly to the precursor. The isolation 
and characterization of these IAPs provides 
the opportunity to investigate their func- 
tions in chloroplast import. 

presence of unlabeled ATP (Fig. 6A). The 
[a-3ZP]GTP-labeled 86-kD polypeptide was 
indeed IAP86 as it was immunoprecipitated 
with anti-IAP86 (Fig. 6B). 

IAP86 appears to be an integral mem- 
brane protein of the outer membrane, be- 
cause it was not extracted from chloroplasts 
by high concentrations of salt or at pH 11.5 
(Fig. ?A). Moreover, IAP86 appears to be 
at least partially exposed on the chloroplast 
surface because incubation of chloroplasts 
with thermolysin caused its degradation to a 
50-kD fragment that was still reactive with 
anti-IAP86 (Fig. 7B). The nature of the 
membrane anchor of IAP86 is not apparent; 
standard hydrophilicity analysis of the par- 
tial IAP86 sequence did not identify a seg- 
ment of sufficient length and hydrophobic- 
ity to span the membrane as an alpha helix 
(8). An 86-kD outer membrane protein also 
has been identified by crosslinking of chlo- 
roplast-bound pS (10) and in a detergent- 
extracted outer membrane fraction that 
contains bound pS (I 1 ). It remains to be 
seen whether either of these 86-kD proteins 
is identical to IAP86. 

Nonhydrolyzable GTP analogs interfere 
with protein import into chloroplasts (12). 
but it is not known at what stage of the 
import process this inhibition occurs. Our 
finding that two of four outer membrane 
IAPs are GTP-binding proteins suggests 
that GTP may be required in the early 
phase of the import process, that is, in the 
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Prevention of T Cell Anergy by Signaling Through 
the y, Chain of the IL-2 Receptor 

Vassiliki A. Boussiotis,* Dwayne L. Barber, Takayuki Nakarai, 
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Alan D. D'Andrea, Jerome Ritz, Lee M. Nadler 

When stimulated through their antigen receptor without requisite costimulation, T cells 
enter a state of antigen-specific unresponsiveness, termed anergy. In this study, signaling 
through the common y chain of the interleukin-2 (IL-2), IL-4, and IL-7 receptors in the 
presence of antigen was found to be sufficient to prevent the induction of anergy. After 
culture with IL-2, IL-4, or IL-7, Jak3 kinase was tyrosine-phosphorylated, which correlated 
with the prevention of anergy. Therefore, a signal through the common y chain may 
regulate the decision of T cells to either clonally expand or enter a state of anergy. 

Although little is known about the molec- 
ular mechanisms responsible for the induc- 
tion and maintenance of anergy ( I ) ,  the 
critical costimulatory signal necessary to pre- 
vent the induction of anergy is probably 
mediated through the CD28 molecule on  
the T cell surface (2-4). After T cell recep- 
tor (TCR) signaling, ligation of CD28 by 
either of its natural ligands, B7-1 or B7-2, 
induces secretion of a number of cvtokines, 

most notably IL-2, which results in T cell 
clonal proliferation and effector function 
(5). In the absence of CD28-mediated co- 
stimulation, addition of exogenous IL-2 dur- 
ing TCR activation can also prevent the 
induction of anergy (6-8). Therefore, the 
critical signal necessary to prevent anergy 
might not be mediated directly through 
CD28, but might be delivered by signaling 
throueh the IL-2 receotor IIL-2R). However, ' 
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mented membrane of each sample after alkaline ex- 
traction. 
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with cell lines that expressed different co- 
stimulatory molecules (Fig. 1).  All experi- 
ments were done with at least two T cell 
clones. T cells were stimulated with the Ep- 
stein-Barr virus (EBV)-transformed B lym- 
phoblastoid cell line LBL-DR7, which is ho- 
mozygous for HLA-DR7 and expresses B7-1, 
B7-2, LFA-1, LFA-3, and ICAM-1, with 
NIH 3T3 fibroblasts transfected with HLA- 
DR7 alone (t-DR7), or with NIH 3T3 fibro- 
blasts transfected with both HLA-DR7 and 
the B7-1 costimulatory molecule (t-DR7.B7- 
1). HLA-DR7-specific alloreactive T cell 
clones stimulated with either LBL-DR7 or 
t-DR7.B7-1 cells proliferated in response to 
secondary rechallenge with LBL-DR7 cells. 
In contrast, when T cell clones were first 
cultured with either LBL-DR7 cells in the 
presence of a fusion protein consisting of the 
extracellular domain of CTLA4 and an im- 
munoglobulin G (IgG) chain (CTLA4-Ig) 
(3) (to block B7 family-mediated costimu- 
lation) or with t-DR7 cells, they were aner- 
gized and did not respond when rechallenged 
with LBL-DR7 cells. Addition of IL-2, IL-4, 
or IL-7 to the primary culture of T cell clones 
with either LBL-DR7 cells plus CTLA4-Ig or 
with t-DR7 cells prevented the induction of 
anergy (Fig. 1, A and B). In contrast, addi- 
tion of various concentrations of interferon y 
(IFN-y), tumor necrosis factor a (TNF-a), 
IL-6, IL-10, or IL-12 to the primary culture 
of T cell clones with either LBL-DR7 cells 
plus CTLA4-Ig or with t-DR7 cells alone did 
not prevent the induction of anergy. How- 
ever, IFN-y, IL-6, IL-10, and IL-12 each 
alone induced proliferation of the T cell 
clones (lo), which shows that proliferation 
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