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Crystal Structure of B-D-Cellotetraose
Hemihydrate with Implications for the
Structure of Cellulose Il

Katrin GeBler, Norbert KrauBB, Thomas Steiner,
Christian Betzel, Claus Sandmann, Wolfram Saenger*

The crystal structure of B-D-cellotetraose shows the same molecular packing as cellulose
I, with two antiparallel molecules in the unit cell. For cellulose |l, the orientation of the
C6-06 bonds has been described as gauche-trans and trans-gauche, respectively, for
the two antiparallel molecules, which otherwise have identical conformations. In contrast,
in B-D-cellotetraose all C6—-06 bonds are gauche-trans, but the conformations of the two
antiparallel molecules are different. Energy minimization and molecular dynamics studies
suggest that the structure of cellulose Il should be reinvestigated in light of these findings.

Although cellulose is the most abundant
biological macromolecule and has been
studied for 73 years with x-ray diffraction
methods (1), there are still open questions
concerning details of its three-dimensional
structure. This holds for naturally occurring
cellulose 1 and for cellulose II, which is
obtained from cellulose I by treatment with
alkali (mercerization).

In view of the fact that x-ray fiber dif-
fraction techniques yield insufficient data
for the complete description of a molecular
structure at the atomic level, these tech-
niques are usually complemented by model
building. Using these methods, investigators
have shown for cellulose I and II that the
chainlike molecules are formed by (1—4)-
linked B-D-glucopyranoses in the *C; chair
conformation, which are alternately rotated
180° along the chain axis. In cellulose 1, all
molecules are arranged parallel (2). In cel-
lulose II, they are antiparallel and orientated
along the unique ¢ axis in the monoclinic
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unit cell with a = 8.01 A b=904A,c=
10.36 A, and y = 117.1°, space group P2,
with two molecules A and B in the asym-
metric unit (3-5). Molecule A is located in
the corner of the a, b plane of the unit cell
and the antiparallel molecule B is in the
center (Fig. 1) and shifted 2.24 A (3) or 3.0
A (4) along c. The torsion angles ¢ and W,
which describe rotation about the interglu-
cose link, are identical in molecules A and
B, but the orientation of the exocyclic C6—
O6 bond, X, has been described as tg (trans-
gauche) for A and gt (gauche- trans) for B
(3) [see (6)]. The conformation of cellulose
II is stabilized by intramolecular hydrogen
bonds O3++O5’ (A and B) and 0206’
(only A) (Table 1), and a number of inter-
molecular hydrogen bonds connect the mol-
ecules into sheets parallel to the (010) and
(120) planes (Fig. 1). Because these interac-
tions are not identical as reported in (3) and
(4), the structure of cellulose II is still under
debate and other models have been dis-
cussed, with major emphasis on the orien-
tation of the C6-0O6 bonds (7). One of
the best methods to resolve the structural
ambiguities would be x-ray diffraction on
single crystals of oligo-B-D-celluloses. We
describe here the crystal structure of B-D-
cellotetraose (8), which exhibits a molecular
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packing that is comparable to that of cellu-
lose 1I.

B-D-Cellotetraose crystallizes in the tri-
clinic space group P1 with unit cell param-
eters a = 8.023 A,b=8.951A,c=22.445
A, a =89.26° B = 85.07°,and y = 63.93°
(8). After transformation to a cell with
obtuse angle vy, a = 8.026 A, b = 9.030 A,
c=122445A, o = 93.68°, 3 = 85.10°, and
v = 116.96° the structure of the cell is
comparable to that of cellulose II given
above except for the c axis, which accom-
modates a D-glucopyranose tetramer. In
both unit cells, the asymmetric unit con-
tains two molecules in antiparallel arrange-
ment, and in B-D-cellotetraose a water mol-
ecule forms hydrogen bonds with the ends
of three adjacent molecules. Because hydro-
gen atoms of O-H groups and of water
could not be located in this crystal struc-
ture, hydrogen bonds are discussed on the
basis of short OO contacts (9).

The eight glucopyranoses in the two
B-D-cellotetraose molecules adopt the typ-
ical *C, chair form, and all C6-O6 bonds
are in the gt orientation (6). Adjacent glu-
coses are rotated 180° so that systematic
intramolecular hydrogen bonds can form

(Fig. 2A), with O3-05" within 2.78 to

Fig. 1. Packing of B-D-cellotetraose in
the ab plane. Only one glucopyranose is
shown for each molecule. Molecules A
and B are oriented parallel in sheets in the
ac plane; A is antiparallel to B. The circle
indicates the water molecule. Solid lines
represent the crystal unit cell; dotted lines
indicate an unconventional unit cell com-
parable to that used in fiber diffraction
studies (2-5); dashed lines designate the
section (120) of the unit cell described in
Fig. 3.

2.91 A and 0306’ within 3.02 r0 3.35 A
(omitting O33A-064A, 3.62 A, to the
terminal glucose) (Table 1). This arrange-
ment can be interpreted as three-center
bonds, in which O3-H donates simulta-
neously to O5’ (major component) and O6’
(minor component) of the adjacent glucose
(7, 9). A possible alternative is a conven-
tional two-center bond, O3-H=O5’, as sug-
gested for cellulose I and cellulose 11 (2-5).

The two B-D-cellotetraose molecules A
and B differ in their overall conforma-
tions. The superposition of molecules A
and B (Fig. 3) shows that glucoses 1
through 3 differ in their puckering, which
affects mainly the orientations of the
C3-0O3 bonds. According to the Cremer
and Pople parameters (10), the glucopyr-
anoses in A are “standard” and in B are
more strained, probably as a result of pack-
ing effects or hydrogen-bonding interac-
tions. These differences are also reflected
in the ¢, ¥ torsion angles for glucoses 2
and 3 in B-D-cellotetraose; angles ¢ differ
by 11°, whereas angles ¥ are similar in A
and B (6).

With respect to the direction of the ¢
axis, translation-related B-D-cellotetraose
molecules form “infinite” strands (Fig. 2ZA).

Adjacent molecules are hydrogen-bonded
0104’ (2.83 A), 0103 (2.70 A), and
0204’ (3.28 A), and only slight rear-
rangement was required to form the cova-
lent B(1—4) linkage as in cellulose II.

As shown in Fig. 1, the B-D-cellotetraose
molecules are tilted with respect to the ac
(010) plane. This permits two types of inter-
molecular hydrogen bonds to form, first be-
tween parallel molecules (A or B) in the ac
(010) plane and second between antiparallel
molecules (A and B) in the (120) plane (see
Fig. 1). Both types of hydrogen bonds lead to
planar, hydrogen-bonded sheets of B-D-cel-
lotetraose molecules that interpenetrate
each other. No hydrogen bonds are observed
in the direction of the b axis.

The sheets formed by parallel B-D-cel-
lotetraose molecules in the (010) plane are
stabilized by intermolecular O2-+O6 hydro-
gen bonds. Adjacent sheets A, B are anti-
parallel at a van der Waals distance of 3.5 A
and are shifted relative to each other along
the crystaflographic ¢ axis by 2.5 A. This
displacement corresponds to half a glucose
and was also indicated for cellulose II (3-5).
It permits optimum molecular packing,
which is tighter for cellulose Il than for
cellulose 1 (3, 4).

In the (120) plane, adjacent B-D-cel-
lotetraose molecules are in an antiparallel
orientation and are engaged in a more
complex network of hydrogen bonds (Fig.
2B). The interactions are O2A--O2B,
O3A~06B, O6A-03B, O6A-O5B, and
O6A~+QO6B (Table 1). The hydrogen-bond-
ing patterns in both sheets are periodic in
spite of small twists out of the molecular
plane observed for the terminal glucoses.

To explore the validity of B-D-cellote-
traose as a model for cellulose I, we con-
structed a cellulose polymer by translation

Fig. 2. (A) Description of the sheets of parallel molecules (A or B in Fig. 1).
Dotted lines indicate short O-+O contacts that are probably hydrogen
bonds. The intermolecular hydrogen bonds involving O1 connect adjacent
molecules in the ¢ direction to form ‘‘pseudopolymeric’ cellulose II. (B)

Packing arrangement and hydrogen bonding (dotted lines) of sheets con-
taining antiparallel B-D-cellotetraose molecules; section (120) (see Fig. 1).
Intramolecular hydrogen bonds are not drawn for the sake of clarity; they
are as shown in (A).
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Table 1. Hydrogen-bonding interactions in cellulose Il from Kolpak and Blackwell (3) and Stipanovic and
Sarko (4) and in the crystal structure of B-D-cellotetraose (average values). In the model of cellulose |l
derived on the basis of the crystal structure, the same hydrogen bonds are formed as in the crystal, with
differences in bond lengths smaller than 0.06 A. The labels gt and tg refer to molecules with the respective

orientations of their C6-06 bonds.

Kolpak and Blackwell

Stipanovic and Sarko

Crystal structure

Orien- Length  Orien- Length  Orien- Length
tation Bond A tation Bond @A) tation Bond A&
Intramolecular
gt 03-05’ 2.69 gt 03-05’ 2.70 gt O3A-0O5'A 2.79
OBA-06'A 3.27*
tg 06-02' 2.73 tg 06-02' 2.76 gt 03B-05'B 2.87
03-05’ 2.69 03-05’ 2.70 0O3B-06'B 3.15
Intermolecular, parallel to (010) (Fig. 2)
gt 06-02 2.76 gt 06-02 2,97 gt OBA-02A 2.70
tg 06-03 2.67 tg 06-03 2.65 gt 06B-02B 2.64
Intermolecular, parallel to (120) (Fig. 3)
02A-02B 2,77t 02A-02B 2.621 02A-02B 2.72
O3A-06B 2.80 O3A-06B 3.22
OB6A-03B 2.84 0O6A-03B 3.138
0OB6A-06B 2.65
OB6A-0O5B 3.25
*Omitting O33A-064A (3.62 A). fTMolecule A has gt and molecule B has tg conformation.

Fig. 3..Superposition of B-D-cellotetraose molecules A (black) and B (gray) by least squares fit (root-
mean-square deviation 0.25 A). Glucoses 1 to 3'show similar differences (affecting the orientation of the
C3-083 bond, see arrowheads) in their conformation; glucose 4 experiences end effects.

of only the central cellobiose fragment of
the two molecules A and B to avoid end
effects. This model was fitted by least
squares to the fiber structure and into the
unit cell of cellulose II (3) (root-mean-
square deviation 0.17 A, omitting the O6
groups). Energy minimization of both mod-
els with periodic boundary conditions on
the crystal lattice clearly indicated that our
model was superior to that reported in (3)
by 10 kcal mol™! (11). In addition, molec-
ular dynamics simulations were performed.
The structures were averaged over the last
40 ps of the simulation and then subjected
to energy minimization (12); in this case
also, our model was more stable than the
model based on (3) by 4 kcal mol™!.
These results suggest that the fiber struc-
ture of cellulose II should be reinvestigated
to determine whether the differences in
D-glucopyranose conformation and torsion
angles in the B-D-cellotetraose crystal struc-
ture can be verified and whether the C6—
O6 bonds are all in the same gt orientation;
this was also indicated by a singlet for C6 in
the 1C cross polarization-magic angle spin-
ning nuclear magnetic resonance spectrum
of cellulose II (13, 14). It has been ques-

tioned, however, whether the fiber x-ray
data are of sufficient quality. to permit a
conclusive answer if fine details of a struc-
ture are considered [calculated energy val-
ues are more sensitive to structural changes
(including hydrogen bonds) than crystallo-
graphic R factors (7)].
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