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Crystal Structure of P-~-Cellotetraose 
Hemihydrate with Implications for the 

Structure of Cellulose II 
Katrin GeOler, Norbert KrauO, Thomas Steiner, 

Christian Betzel, Claus Sandmann, Wolfram Saenger* 

The crystal structure of p-D-cellotetraose shows the same molecular packing as cellulose 
II, with two antiparallel molecules in the unit cell. For cellulose II, the orientation of the 
C6-06 bonds has been described as gauche-trans and trans-gauche, respectively, for 
the two antiparallel molecules, which otherwise have identical conformations. In contrast, 
in p-D-cellotetraose all C6-06 bonds are gauche-trans, but the conformations of the two 
antiparallel molecules are different. Energy minimization and molecular dynamics studies 
suggest that the structure of cellulose II should be reinvestigated in light of these findings. 

Although cellulose is the most abundant 
0 

biological macromolecule and has been 
studied for 73 vears with x-rav diffraction 
methods (1 ), there are still open questions 
concerning details of its three-dimensional " 
structure. This holds for naturally occurring 
cellulose I and for cellulose 11, which is 
obtained from cellulose I by treatment with 
alkali (mercerization). 

In view of the fact that x-ray fiber dif- 
fraction techniques yield insufficient data 
for the complete description of a molecular 
structure at the atomic level, these tech- 
niques are usually complemented by model 
building. Using these methods, investigators 
have shown for cellulose I and I1 that the 
chainlike molecules are formed by (1+4)- 
linked p-D-glucopyranoses in the 4C, chair 
conformation, which are alternately rotated 
180" along the chain axis. In cellulose I, all 
molecules are arranged parallel (2).  In cel- 
lulose 11, they are antiparallel and orientated 
along the unique c axis in the monoclinic 

K. GeOler, N. KrauB, Th. Steiner, C. Sandmann, W. 
Saenqer, lnst~tut fur Kr~stalloqraphie, Freie Universitat 
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unit ceil with a = 8.01 A, b = 9.04 A, c = 
10.36 A, and y = 117.1°, space group P2,, 
with two molecules A and B in the asym- 
metric unit (3-5). Molecule A is located in 
the corner of the a, b  lane of the unit cell 
and the antiparallel molecule is in the 
center (Fig. 1) and shifted 2.24 A (3) or 3.0 
A (4) along c. The torsion angles + and q, 
which describe rotation about the interglu- 
cose link, are identical in molecules A and 
B, but the orientation of the exocyclic C6- 
0 6  bond, X ,  has been described as tg (trans- 
gauche) for A and gt (gauche- trans) for B 
(3) [see (6)]. The conformation of cellulose 
I1 is stabilized by intramolecular hydrogen 
bonds 03.-05' (A  and B) and 02...06' 
(only A)  (Table I) ,  and a number of inter- 
molecular hydrogen bonds connect the mol- 
ecules into sheets parallel to the (010) and 
(120) planes (Fig. 1). Because these interac- 
tions are not identical as reported in (3) and 
(4), the structure of cellulose I1 is still under 
debate and other models have been dis- 
cussed, with major emphasis on the orien- 
tation of the C6-06 bonds (7) .  One of ~, 

the best methods to resolve the structural 
ambiguities would be x-ray diffraction on 
single crystals of oligo-p-D-celluloses. We 
describe here the crvstal structure of B-D- 
cellotetraose (a), which exhibits a moleiular 
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packing that is comparable to that of cellu- 
lose 11. 

p-D-Cellotetraose crystallizes in the tri- 
clinic space group P1 with unit cell param- 
eters a = 8.023 A, b = 8.951 A, c = 22.445 
A, a = 89.26', P = 85.07', and y = 63.93' 
(8). After transformation >o a cell w i g  
obtuse angleoy, a = 8.026 A, b = 9.030 A, 
c = 22.445 A, a = 93.68", P = 85.10°, and 
y = 116.96", the structure of the cell is 
com~arable to that of cellulose 11 given u 

above except for the c axis, which accom- 
modates a D-glucopyranose tetramer. In 
both unit cells, the asymmetric unit con- 
tains two molecules in antbarallel arrange- - 
ment, and in P-D-cellotetraose a water mol- 
ecule forms hydrogen bonds with the ends 
of three adjacent molecules. Because hydro- 
gen atoms of O-H groups and of water 
could not be located in this crystal struc- 
ture, hydrogen bonds are discussed on the 
basis of short 0.-0 contacts (9). 

The eight glucopyranoses in the two 
P-D-cellotetraose molecules adopt the typ- 
ical 4C, chair form, and all C6-06 bonds 
are in the gt orientation (6). Adjacent glu- 
coses are rotated 180' so that systematic 
intramolecular hydrogen bonds can form 
(Fig. 2A), with 03.-05' within 2.78 to 

2.91 A and 03...06' within 3.02 ~o 3.35 A 
(omitting 033A-.064A, 3.62 A, to the 
terminal glucose) (Table 1). This arrange- 
ment can be interpreted as three-center 
bonds, in which 03-H donates simulta- 
neously to 0 5 '  (major component) and 0 6 '  
(minor component) of the adjacent glucose 
(7, 9). A possible alternative is a conven- 
tional two-center bond, 03-H.-05', as sug- 
gested for cellulose I and cellulose I1 (2-5). 

The two P-D-cellotetraose molecules A 
and B differ in their overall conforma- 
tions. The superposition of molecules A 
and B (Fig. 3) shows that glucoses 1 
through 3 differ in their puckering, which 
affects mainly the orientations of the 
C3-03 bonds. According to the Cremer 
and Pople parameters ( lo ) ,  the glucopyr- 
anoses in A are "standard" and in B are 
more strained, probably as a result of pack- 
ing effects or hydrogen-bonding interac- 
tions. These differences are also reflected 
in the +, torsion angles for glucoses 2 
and 3 in P-D-cellotetraose; angles + differ 
by 1 l o ,  whereas angles are similar in A 
and B (6). 

With respect to the direction of the c 
axis, translation-related P-D-cellotetraose 
molecules form "infinite" strands (Fig. 2A). 

Fig. 1. Packing of p-D-cellotetraose in , . . , .. . . .. 
the ab plane. Only one glucopyranose is 
shown for each molecule. Molecules A 
and Bare oriented parallel in sheets in the 

.. . . . ac plane; A is antiparallel to B. The circle 
indicates the water molecule. Solid lines 

0 '.., .'... 
represent the crvstal unit cell; dotted lines . . . . . . 
indicate an unconventional unit cell com- < <:::::::;hp / 
parable to that used in fiber diffraction a 
studies (2-5); dashed lines designate the .. .. , , . , 

section (1 20) of the unit cell described in 
. . 

Fig. 3. 

Adjacent molec?les are hydrogen-bonded 
01.-04'  (2.83 A), 01.-03' (2.70 A) ,  and 
02...04' (3.28 A),  and only slight rear- 
rangement was required to form the cova- 
lent P(1-4) linkage as in cellulose 11. 

As shown in Fig. 1, the P-D-cellotetraose 
molecules are tilted with respect to the ac 
(010) plane. This permits two types of inter- 
molecular hydrogen bonds to form, first be- 
tween parallel molecules (A  or B) in the ac 
(010) plane and second between antiparallel 
molecules (A  and B) in the (120) plane (see 
Fig. 1). Both types of hydrogen bonds lead to 
planar, hydrogen-bonded sheets of p-D-cel- 
lotetraose molecules that interpenetrate 
each other. No hydrogen bonds are observed 
in the direction of the b axis. 

The sheets formed by parallel p-D-cel- 
lotetraose molecules in the (010) plane are 
stabilized by intermolecular 02...06 hydro- 
gen bonds. Adjacent sheets A, B are anti- 
parallel at a van der Waals distance of 3.5 A 
and are shifted relative to each othe; along 
the crystal'lographic c axis by 2.5 A. This 
displacement corresponds to half a glucose 
and was also indicated for cellulose I1 (3-5). 
It permits optimum molecular packing, 
which is tighter for cellulose I1 than for 
cellulose I (3, 4). 

In the (120) plane, adjacent p-D-cel- 
lotetraose molecules are in an antiparallel 
orientation and are engaged in a more 
complex network of hydrogen bonds (Fig. 
2B). The interactions are 02A...02B, 
03A.-06B, 06A-.03B, 06A-.05B, and 
06A+-06B (Table 1). The hydrogen-bond- 
ing patterns in both sheets are periodic in 
spite of small twists out of the molecular 
plane observed for the terminal glucoses. 

To explore the validity of p-D-cellote- 
traose as a model for cellulose 11, we con- 
structed a cellulose polymer by translation 

Fig. 2. (A) Descr~ption of the sheets of parallel molecules (A or B in Fig. 1). Packing arrangement and hydrogen bonding (dotted lines) of sheets con- 
Dotted lines indicate short 0-0 contacts that are probably hydrogen taining antiparallel p-D-cellotetraose molecules; section (120) (see Fig. 1). 
bonds. The intermolecular hydrogen bonds involving 0 1  connect adjacent Intramolecular hydrogen bonds are not drawn for the sake of clarity; they 
molecules in the c direction to form "pseudopolymeric" cellulose II. (B) are as shown in (A). 
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Table 1. Hydrogen-bonding interactions in cellulose II from Kolpak and Blackwell (3) and Stipanovlc and 
Sarko (4) and in the crystal structure of p-D-cellotetraose (average values). In the model of cellulose II  
derived on the basis of the crystal structure, the same hydrogen bonds are formed as in the crystal, with 
differences in bond lengths smallerthan 0 .06A.  The labelsgt and tg refer to molecules with the respective 
orientations of their C 6 - 0 6  bonds. 

Kolpak and Blackwell St~panovic and Sarko Crystal structure 

Orien- Bond Length Orlen- Length Orien- Bond Length 
Bond tatlon (A) tation (A) tation (A) 

lntrarnolecular 
gt 0 3 - 0 5 '  2 .69  gt 0 3 - 0 5 '  2.70 gt 

tg 0 6 - 0 2 '  2.73 tg 0 6 - 0 2 '  2.76 gt 
0 3 - 0 5 '  2.69 0 3 - 0 5 '  2 .70 

Interrnolecular, parallel to (01 0) (Fig. 2) 
gt 0 6 - 0 2  2.76 gt 0 6 - 0 2  2.97 gt 
&I 0 6 - 0 3  2.67 tg 06-03 2 .65  gt 

Interrnolecular, parallel to (1 20) (Fig. 3) 
02A-02B 2 . 7 7 t  02A-02B 2 . 6 2 t  

03A-06B 2.80 
0 6 A - 0 3 B  2.84 

*Omitting 033A-064A (3.62 A). tMolecule A has gt and molecule B has tg conformation 

Fig. 3..Superposition of p-D;cellotetraose molecules A (black) and B (gray) by least squares fit (root- 
mean.-square devlation 0.25 A). Glucoses 1 to 3'show similar differences (affecting the orientation of the 
C3-03 bond, see arrowheads) in their conformation; glucose 4 experiences end effects. 

of onlv the central cellobiose fragment of 
the two molecules A and B to aioid end 
effects. This model was fitted by least 
squares to the fiber structure and into the 
unit cell of cellulose !I (3) (root-mean- 
square deviation 0.17 A, omitting the 0 6  
groups). Energy minimization of both mod- 
els with periodic boundary conditions on 
the crystal lattice clearly indicated that our 
model was superior to that reported in (3)  
by 10 kcal mol-' (1 1 ). In addition, molec- 
ular dvnamics simulations were ~erformed. 

tioned, however, whether the fiber x-ray 
data are of sufficient quality to permit a 
conclusive answer if fine details of a struc- 
ture are considered [calculated energy val- 
ues are more sensitive to structural changes 
(including hydrogen bonds) than crystallo- 
graphic R factors (7 )] .  
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