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Interaction of a Protein Phosphatase with an 
Arabidopsis Serine-Threonine Receptor Kinase 

Julie M. Stone, Margaret A. Collinge, Robert D. Smith, 
Mark A. Horn, John C. Walker* 

A protein phosphatase was cloned that interacts with a serine-threonine receptor-like 
kinase, RLK5, from Arabidopsis thaliana. The phosphatase, designated KAPP (kinase- 
associated protein phosphatase), is composed of three domains: an amino-terminal 
signal anchor, a kinase interaction (KI) domain, and a type 2C protein phosphatase 
catalytic region. Association of RLK5 with the KI domain is dependent on phosphorylation 
of RLK5 and can be abolished by dephosphorylation. KAPP may function as a signaling 
component in a pathway involving RLK5. 

M a n y  signal transduction pathways in- 
volved in the control of cell proliferation 
and differentiation originate with trans- 
membrane receptors containing cytoplas- 
mic ~ r o t e i n  kinase domains. Although " 

much of the research done has focused on 
receptor tyrosine kinases (RTKs) ( 1  ), re- 
ceptor serine-threonine kinases have been 
identified as well. These include the trans- 
forming growth factor p and activin recep- 
tor superfamily (2) and all known recep- 
tor-like kinases from higher plants (3, 4).  
We report here the identification of a 
protein phosphatase that interacts with 
the phosphorylated form of a putative 
plant receptor serine-threonine kinase. 
This interaction is reminiscent of the 
mechanisms by which RTKs activate cel- 
lular signaling events. The signaling pro- 
cess of RTKs includes recognition of a 
polypeptide ligand, dimerization of the re- 
ceptor, and a~tophosphor~lation of ty- 
rosine residues in the cytoplasmic portion 
of the molecule. These phosphorylated ty- 
rosines with their flanking amino acids 
serve as high-affinity binding sites for cel- 
lular proteins containing Src homology 2 
(SH2) domains ( 5 ) .  Therefore, activation 
of RTKs leads to the formation of protein 
complexes at the plasma membrane that 
are capable of transmitting signals to the 
next molecule in the signal cascade. 

The RLK5 gene from Arabidopsis thaliana 
encodes a ~ ro te in  with features characteris- 
tic of the polypeptide growth factor recep- 
tor kinases: a large NH,-terminal extracel- 
lular domain, a single transmembrane do- 
main, and a COOH-terminal protein kinase 
catalytic domain (3). The protein kinase 
domain of RLK5, when expressed as a fusion 
protein in Escherichia coli, autophosphoryl- 
ates exclusively on serine and threonine 
residues (6). 

To identify components of a signal trans- 
duction pathway involving RLK5, interac- 
tion cloning (7, 8) was used. An Arabidopsis 
complementary DNA (cDNA) expression 
library was screened for proteins that inter- 
act with the protein kinase catalytic domain 
of RLK5 (RLK5CAT). The probe used in 
this filter-binding assay was a glutathione-s- 
transferase (GST)-RLK5CAT fusion pro- 
tein labeled with 32P at a protein kinase A 
recognition site at the junction of the fusion 
(8). A positive clone was purified, sub- 
cloned, and sequenced (9). The cDNA in- 
sert encodes a 239-amino acid domain re- 
ferred to as the KI domain. Sequence com- 
parison has not revealed any strong homol- 
ogies with previously reported sequences 
(10). 

The possibility that interaction be- 
tween the KI domain and RLK5 is phos- 
phorylation-dependent was explored by in 
vitro binding studies. Analyses of protein- 
protein interaction on membrane filters 
( 1  1) demonstrated that the KI domain is 
capable of binding to RLKjCAT, which is 
autophosphorylated in E. coli (6). Treat- 
ment with a type 1 serine-threonine pro- 
tein phosphatase, ZmPPl ( 1  2), abolished 
the interaction, whereas phosphatase 
treatment in the presence of okadaic acid, 
an inhibitor of type 1 protein phospha- 
tases, did not interfere with the interac- 
tion. Furthermore, the KI domain does not 
bind a mutant form of RLK5 that is inca- 
pable of autopho~phor~lation (Fig. 1). 
These results show that association of the 
KI domain with RLK5 requires phosphor- 
ylation. Furthermore, the KI domain does 
not indiscriminately bind phosphopro- 
teins, including 32P-GST, or an autophos- 
phorylated receptor-like kinase from Zea 
mays (13). 

Full-length cDNA clones were identi- 
fied by screening of an Arabido~sis cDNA 
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consists of a hydrophobic segment imme- 
diately followed by a number of positively 
charged residues, which indicates that it 
may function as a type I signal anchor 
(SAI) (Fig. 2B). An SAI topogenic signal 
acts as an uncleaved signal peptide, result- 
ing in cytoplasmic orientation of a mem- 
brane-anchored protein (14). This local- 
ization is consistent with the protein's in- 
teraction with RLKS and possibly with 
other membrane-localized phosphopro- 
teins. The COOH-terminal region shows 
homology with type 2C serine-threonine 
protein phosphatases (10) (Fig. 2C). Type 
2C protein phosphatases (PP2C) are char- 
acterized by an absolute requirement for 
divalent cations and by insensitivity to 
the phosphatase inhibitor okadaic acid 
(15). We have therefore named the pro- 
tein KAPP, for kinase-associated protein 
phosphatase. 

Protein phosphatase catalytic activity 
was assayed with a recombinant fusion 
protein containing the predicted protein 
phosphatase catalytic domain of KAPP 
(MBP-PrP) (Fig. 3). The dephosphoryla- 
tion of 32P-casein by MBP-PrP was linear 
with time in the presence of divalent cat- 
ions. Addition of EDTA, a chelator of 
divalent cations, abolished phosphatase 
activity. MBP-PrP activity was unaffected 
by okadaic acid, a specific inhibitor of 
types 1 and 2A protein phosphatases (1 3). 
These observations are consistent with 
KAPP having a PP2C catalytic domain. 

Genomic Southern (DNA) analysis in- 
dicated that KAPP is a single copy gene in 
Arabidopsis (Fig. 4A). Additional bands 
hybridized to the KAPP probe at low strin- 
gency (1 3), which suggests the presence of 
homologous genes. Low stringency hybrid- 
ization of a 2. mays cDNA library revealed 
clones that hybridize to sequences encod- 
ing both the NH2-terminal portion of 
KAPP and the PP2C catalytic domain 
(16). The existence of homologous pro- 
teins in maize and Arabidopsis suggests that 
KAPP may belong to a family of proteins 
involved in serine-threonine phosphoryla- 
tion cascades in higher plants. RNA blot 
analysis indicated that KAPP is expressed 
in all tissues examined, with larger 
amounts seen in roots than in rosettes, 
whereas RLK5 is expressed in the least 
amounts in roots (Fig. 4B). Therefore, 
KAPP may have an additional role in 
RLK5-independent signaling pathways. 

The identification and preliminary 
characterization of a protein, KAPP, that 
interacts with the protein kinase catalytic 
domain of RLK5 may help elucidate the 
proximal events in signaling pathways 
originating from serine-threonine receptor 
kinases. The observation that the interac- 
tion is dependent on the phosphorylation 
status of RLK5 is of particular interest. 
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Fig. 1. The KI domain interacts with the autophosphorylated form kD 1 2 3 4 
of RLK5. Binding assays (1 1) demonstrate that the KI domain 97,4- 
binds to the catalytic domain of RLK5. Maltose binding protein 
(MBP) fusions to RLK~CAT, which is active and autophosphory- 
lated, and to RLK5CAT(Lys711 + Glu711) (K711E) (27), which 
contains a point mutation at the conserved lysine required for 
phosphotransfer, were expressed in E. coli. The affinity-purified 
recombinant fusion proteins were subjected to SDS-PAGE, elec- 
trophoretically transferred to PVDF, and probed with 32P-labeled 
fusion protein containing the KI domain (GST-KID) (8). Molecular 66- 

weight markers are indicated on the left. The top panel shows a gel 
stained with Coomassie blue, and the bottom panel shows the 
corresponding autoradiogram after probing with GST-KID. The KI 97.4-L3 
domain is capable of interacting with the catalytic domain of RLK5 (MBP-RLKSCAT) (lane 1). Pretreat- 
ment of MBP-RLK5CAT with a type 1 protein phosphatase, ZmPP1 (12), abolishes the interaction with 
the KI domain (lane 2). If ZmPPl activity is blocked during pretreatment by okadaic acid, the KI domain 
still binds (lane 3). In addition, the KI domain cannot bind to the mutant form of RLK5 [MBP- 
RWAT(K71 l a  (lane 4), which is incapable of autophosphorylation (6). Control blots probed with 
32P-GST showed no binding, and the lower band, a proteolytic degradation product of MBP-RLK~CAT, 
is phosphorylated (13). 
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Fig. 2 Amino acid sequence of KAPP and comparison with type 2C serine-threonine protein phospha- 
tases. (A) Schematic diagram of the protein encoded by full-length KAPP cDNA. The NH,-terminal 
sequence characteristic of an SAI is shaded. The KI domain originally isolated by interaction cloning (9) 
and the COOH-terminal domain that shows homology to the type 2C serine-threonine protein phos- 
phatases (PP2C) are indicated. (B) The single-letter amino acid sequence deduced from the KAPPcDNA 
(27). Amino acid numbers are indicated on the right. The putative hydrophobic NH,-terminal signal 
anchor is shown in lowercase letters, and the basic residues adjacent to this region are designated by 
plus signs. The KI domain is outlined. The KAPP cDNA was cloned and sequenced as described (28). The 
nucleotide and protein sequences of KAPP have been deposited with GenBank (accession number 
U09505). (C) Alignment of the deduced KAPP protein (amino acids 290 to 582) with representative type 
2C serine-threonine protein phosphatases. Alignments were made by the Clustal method with DNASTAR 
software (Madison, Wisconsin). The organisms from which the PP2Cs were isolated are indicated on the 
left and amino acid positions on the right. The identity between KAPP and PP2Cs from yeast, mouse, and 
Leishmania (29) is 19.2%, 15.096, and 12.9%, respectively. Identical residues are signified by shading, 
and gaps introduced to optimize alignment are shown by dashes. 
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The KI domain may be a member of a 
group of protein domains (which includes 
the phosphotyrosine-binding SH2 domain 
subgroup) that interact specifically with 
phosphoamino acid-containing protein 
sequences (5, 1 7). 

In addition to its KI domain, KAPP 
also possesses PP2C enzymatic activity. 
PP2C activity has been found in a number 
of organisms (18), including higher plants 
(19), in which the product of ABII, im- 
plicated in abscisic acid-mediated re- 

0 2 0 4 0 8 0 8 0 1 0 0 1 2 0  
Time bin) 

Fig. 3. KAPP has a protein phosphatase catalytic 
domain with activity characteristic of PP2Cs. Pro- 
tein phosphatase activity is shown as percent of 
dephosphorylation with phosphotylated casein as 
a substrate (30). An MBP fusion protein containing 
the presumed protein phosphatase catalytic do- 
main of KAPP (amino acids 162 to 582) (MBP- 
PrP) dephosphotylates casein in the presence of 
10 mM Mg+2 and 10 mM Mn+2 (circles) but not 10 
mM EDTA (triangles). Control protein (MBP) has 
no protein phosphatase activity in the presence of 
10 mM Mg+2 and 10 mM Mn+2 (squares). The 
a c t i i  is also unaffected by 10 pM okadaic acid 
(73). 

Fig. 4. KAPP is present in the Arabidopsis ge- 
nome in a single copy and is expressed in the 
same tissues as RLK5. (A) Southem analysis. 
Arabidopsis genomic DNA was digested with 
Hind Ill (H), Bam HI (B), and Eco RI (E), separated 
in agarose, transferred to nitrocellulose, and 
probed with 32P-labeled KAPP cDNA. DNA size 
markers are shown on the right in kilobase pairs. 
KAPP appears to be a single copy gene. (B) 
Northem (RNA) blot analysis. Polyadenylated 
RNA was isolated from cultured roots (R), ma- 
ture rosettes (M), and young rosettes (Y), sepa- 
rated in a formaldehyde gel, blotted to a mem- 
brane, and sequentially probed with 32P-cDNAs 
corresponding to KAPP, RLKS (3), and TOPP1, 
an Arabidopsis type 1 protein phosphatase that 
is constitutively expressed (31). Size markers are 
shown in kilobases. 

sponses, has been identified as a PP2C 
(20). These and other protein phospha- 
tases are important components of signal 
transduction pathways. For example, re- 
cent evidence suggests a role for SH2- 
containing protein tyrosine phosphatases 
in signaling from receptor tyrosine kinases 
(21 ). The fact that several of the tyrosine 
phosphatases are regulated by their NH2- 
terminal domains (22) suggests the possi- 
bility that KAPP phosphatase activity is 
regulated by its NH2-terminal KI domain 
by binding to autophosphorylated RLK5. 
Alternatively, as RLKS has been shown to 
phosphorylate the KI domain (13), phos- 
phorylation of KAPP might regulate its 
RLK5-binding ability or protein phos- 
phatase activity or both. Continued study 
of the interaction of KAPP and RLK5 will 
undoubtedly expand our understanding of 
how signals are transduced from serine- 
threonine receptor kinases. 
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cpdrng of protein). Phcsphatase activity was deter- 
mined by standard procedures (26). Briefly, 90-pl 
reactions containing 50 mM tris-HCI (pH 7), 0.1% 
(v/v) 2-rnercaptoethanol, -3 x 108 cpm =P-casein. 
10 of remmbinant protein, and either 10 mM 
EDTA or t ~ I g + ~  and Mn+, (10 mM each) were incu- 
bated at 25°C. Ten-microliter aliquots were removed 
at each time point and added to 100 pl of 20% TCA. 
Radioactivity in 90 111 of supematant was measured 
by scintillation counting. 
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