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Stress in dense polymer systems is classically viewed as being molecular in character and 
is based on the entropic spring concept. A description on the atomic level has been 
developed on the basis of extensive computer simulations. An important new concept is 
the intrinsic monomer stress (IMS), the individual monomer contribution to the macro- 
scopic stress referred to a local moving coordinate system in which the backbone bonds 
attached to that monomer are fixed. The IMS is time-independent and, for a given polymer 
system at fixed density, has the same value in the equilibrium melt, with the melt un- 
dergoing stress relaxation, and in the deformed cross-linked system. 

ple, by modeling a rubberlike solid (that is, 
an elastomer) as a macroscopically amor- 
phous cross-linked network of entropic 
springs satisfying the relation in Eq. 4, one 
is led quickly (3), with few assumptions, to 
the classical formula of rubber elasticity for 
a network subject to a constant volume 
extension, A, in the x, direction, namely 

t , ,  - tzz = v ~ , T ( A ~  - A I )  (5) 

Dense  polymer systems above their glass 
transition temperatures, whether cross- 
linked as in rubber and other elastomers or 
uncross-linked as in polymer melts, play 
important roles in technology and biology. 
As with all classes of materials, a clear 
understanding of the microscopic charac- 
ter of stress is essential. Almost since the 
inception of polymer physics more than 60 
years ago, the microscopic description of 
the nature of stress in polymer systems has 
been on a molecular level-that is, with 
the long-chain molecule as the basic unit 
and with the molecules behaving as en- 
tropic springs as the central concept. In 
this article we present a description of 
stress on the atomic level, in terms of the 
interactions of the atoms of the system 
with their neighbors. 

To provide some historical background 
and explain the entropic spring concept, we 
begin on the macroscopic level with a rub- 
ber thread of length 1 subjected to a tensile 
force f. Neglecting any change in volume in 
the extension process, we can apply the 
principles of macroscopic thermodynamics 
and write 

where A(1, T)  is the Helmholtz free energy 
at absolute temperature T; that is, A(1, T) = 

U(1, T) - TS(1, T),  with U the internal 
energy and S the entropy of the system. 
Therefore, 

This result, known already to Kelvin (1 ) in 
1857, has an important physical interpreta- 
tion: The force required to extend the 
thread serves in part to produce a change in 
internal energy and in part to produce a 
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change in entropy. This result applies 
equally well to all elastic materials; for al- 
most all of these materials, the first term is 
dominant. An exception, studied experi- 
mentally by Joule (2) in 1859, is rubber. For 
this material, the tensile force is found to be 
almost entirely entropic, with little depen- 
dence of internal energy on 1. [This conclu- 
sion is easily deduced (3) from the relation 

obtained from macroscopic thermodynam- 
ics and from the experimentally observed 
proportionality to temperature of the force 
at constant 1.1 

With the work of Kelvin and Joule, the 
entrouic character of rubber elasticitv was 
firmly established on a macroscopic level. A 
microscouic exulanation had to await the 
understanding of the macromolecular char- 
acter of rubber and rubberlike solids, a view 
that became clear in the 1920s largely 
through the efforts of Staudinger (4). Not 
long afterward, Guth and Mark (5) demon- 
strated that a macromolecule with an end- 
to-end distance fixed at 1 behaved as a 
molecular entropic spring in tension. For a 
long linear chain of N freely jointed links 
each of length a, they found that its entropy 
is (for 1 << Na) 

where kg is Boltzmann's constant and C is a 
constant. Therefore (with U again indepen- 
dent of l ) ,  the tensile force required to 
maintain the length 1 was determined to be 

The concept of a linear macromolecule 
as an entropic spring has since played a 
central role in polymer science. For exam- 

where u is the number of chains per unit 
volume and t,,(i, j = 1, 2, 3) is the stress 
tensor (force per unit current area). Note 
that Eq. 5 provides only the value of the 
stress difference, t,,  - tz2. The mean stress 
in the constant-volume system is not deter- 
mined bv the constitutive relation but 
through the imposed boundary conditions, 
such as t2, = tj3 = 0; therefore, we are 
interested only in explaining the deviatoric 
or anisotropic portions of the stress. 

An important conceptual problem with 
the model of an elastomer as a cross-linked 
network of entropic springs soon became 
apparent. Because such springs are always in 
tension with f > 0 when 1 > 0, why does 
the network not simply collapse to a point 
when free of external forces? The answer 
lies, of course, in the strong repulsive inter- 
actions that occur when two atoms aD- 
proach each other closely, so that to first 
approximation each atom may be regarded 
as a hard sphere of diameter a, where the 
value of a is characteristic of its chemical 
species. There is also a weaker attractive 
interaction that becomes dominant at 
greater distances, but in the present discus- 
sion [as in the van der Waals picture of 
simple and molecular liquids (6)] we focus 
on the strong, short-range, repulsive inter- 
action. This short-range interaction is often 
referred to as the excluded volume (EV) or 
steric interaction, both terms referring to 
the hard-sphere interpretation. 

To first approximation, therefore, we 
can regard a dense polymer system such as a 
cross-linked elastomer as a collection of 
atoms interacting through two types of po- 
tentials. Most important are the covalent 
interactions resuonsible for the bonds be- 
tween backbone atoms along each chain 
and their connected side groups. In addi- 
tion, there are the EV interactions between 
any two atoms in close proximity in space. 
The first type represents inherently intra- 
chain interactions that are frequently re- 
ferred to as bonded interactions. The sec- 
ond type may act between intrachain or 
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interchain atoms and are termed non- 
bonded interactions. ( A  third type of intra- 
chain interactions is due to rotational po- 
tentials; for simplicity, we neglect them in 
this discussion.) 

With this background, we are now ready 
to pose a basic question regarding stress on 
the atomic level in these materials: In a 
constant-volume deformation such as that 
leading to Eq. 5, what are the relative con- 
tributions of the bonded and nonbonded 
interactions to the deviatoric stress? The 
classical answer on the molecular level is 
straightforward and unequivocal: The de- 
viatoric stress is due solely to the system of 
chains acting as entropic springs in tension. 
Nonbonded interactions, as in a simple 
atomic liquid, make only an isotropic con- 
tribution to the stress in the deformed poly- 
mer system. Because the principal non- 
bonded interaction is that due to EV, we 
refer to the latter statement as the excluded 
volume hydrostatic hypothesis (EVHH). It 
underlies almost all work to date 17) in the 
mechanics of polymer systems above their 
glass transition temperatures. It is important 
to emphasize that the EVHH refers only to 
the contribution of stress made by EV for a 
given set of atom configurations; it is clearly 
recognized (7) that EV has strong effects on 
the atom dynamics, through entanglements 
or other confining effects. 

Computer Simulation 

The use of high-speed digital computers to 
simulate atomistic models of condensed- 
matter systems has proved to be a valuable 
new way to understand phenomena (in par- 
ticular, stress) on the atomic or monomer 
level and to check the validity there of the 
EVHH. In our simulations, we have used 
what are commonly termed "united-atom" 
models in which all side-group atoms are 
collapsed onto the backbone atom and the 
entire monomer is reuresented as a single " 

"atom" of appropriate size. In that sense our 
descri~tion is on the monomer level. We 
believe that simulations with all atoms ex- 
plicitly modeled (8) would give an atomic- 
level picture that would differ only in de- 
tails from the present monomer-level dis- 
cussion. Below we use the terms "atom" and 
"monomer" interchangeably to denote the 
united-atom entitv of our simulation. 

Our simulations have used the tech- 
nique of molecular dynamics, together with 
the usual periodic boundary conditions (9). 
Chain models have ranged from the hiehlv " - ,  

idealized freely jointed case to more realistic 
ones involving bond-angle and rotational 
potentials. In all of the studies, intra- and 
interchain nonbonded interactions have 
been included; the latter have generally 
been represented by the repulsive part of a 
Lennard-Jones potential (with parameters a 

and E),  although in some cases the effect of 
an attractive tail has been studied. 

An  important aspect of our simulation 
studies has been the use of the generalized 
virial formula (10) to compute the macro- 
scopic stress tensor, t,], in terms of atomic 
interactions. For the case of freely jointed 
chains, in which both the bonded interac- 
tion potential, ub(r), and the nonbonded 
potential, u, ,~(T),  are two-body, the virial 
formula is 

where n is the number of atoms in volume v; 
ra is the vector displacement between a pair, 
a,  of interacting atoms; r" = 1r"l; rp are the 
components of r" with respect to the coor- 
dinate system x,; the notations a E b and a 
E nb indicate that these sums range over all 
pairs of atoms interacting by way of the 
potential, ub or u,,,,, respectively; uhf and unht 
denote derivatives of these potentials; and 
brackets denote long-time averages in equi- 
librium systems or ensemble averages in non- 
equilibrium studies. Further details regarding 
the use of the virial stress formula and its 
generalization to cases in which three-body 
angle potentials and four-body rotational po- 
tentials are present may be found in ( 1  1-13). 
The use of the virial formula permits a rig- 
orous decomposition of the deviatoric stress 
into that portion due to bonded interactions 
and that due to nonbonded interactions. 

Simulation Results 

The sequence of computer simulations that 
we have performed has yielded a surprising- 
ly detailed picture of stress on the monomer 
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Fig. 1. Contributions to stress difference, t ,, - 
t ,,, made by nonbonded and bonded potentials 
[after (14)l. Results are from a simulation of a 
model network of freely jointed chains with bond 
length a,  a = a,  and N = 10 bonds, subjected to 
a constant-volume uniaxial extension, h = 2. Re- 
duced density, p = nu3/v, is varied by change in 
system volume, v. 

level, one that is greatly different from the 
classical molecular view. 

Nonbonded contribution to deviatoric stress. 
An important parameter in the study of the 
role of EV interactions in dense polymer 
systems is the reduced density, p = na3/w, 
where a is the effective hard-sphere diam- 
eter of each of n atoms confined to volume 
v. For dense polymer systems, such as elas- 
tomers or polymer melts, p - 1. The re- 
duced density or the packing fraction, + = 
vp/6, is central to the theoretical treatment 
of liquids; it is symptomatic of the subsidiary 
role assigned to EV in classical discussions 
of stress in dense polymer systems that these 
parameters or their values are absent from 
theoretical consideration. 

We have performed simulations with 
many different models in the study of this 
question. As an example, we show in Fig. 1 
the stress difference t l l  - t2, and the sepa- 
rate contributions made by bonded and 
nonbonded interactions obtained by simu- 
lating (14) the extension of a model net- 
work. At low reduced density (p = 0.6) the 
two contributions are approximately equal; 
this result already contradicts the EVHH. 
Even more surprising, however, is the be- 
havior of the model as p increases: The 
nonbonded contribution grows and be- 
comes dominant while the bonded contri- 
bution becomes negative. 

Steric shielding. The EVHH is based on 
the reasoning that the nonbonded interac- 
tions are two-body and spherically symmet- 
ric and can therefore make only an isotropic 
contribution to the stress, as in a simple 
atomic liquid. A careful examination of the 
simulation results, however, reveals a new 
feature of the nonbonded interaction in the 
presence of a covalently bonded structure 
that is missing in simple liquids. We term 
this feature steric shielding. 

From an examination of Fig. 2,  it is clear 
that atom A can interact more readily with 
B than with C because the atoms bonded to 
A stericall~ shield A from the close ap- 
proach of C. In a macroscopically isotropic 
system, the nonbonded interactions remain 
statistically isotropic with respect to a fixed 

' laboratory coordinate system. However, 

Fig. 2. Steric shielding of nonbonded interactions 
[after (36)l. For the conformations shown, mono- 
mer C is shielded from close interaction with mer A 
by the mers bonded to A,  while mer B is not 
shielded from close interaction with mer A. 
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when the system is subject to n macroscopic 
deformation, the bonds attached to A as- 
sume a statistically anisotropic orientation 
with respect to the laboratory frame, and so 
the nonbonded interaction makes an aniso- 
tropic contribution. The effect of steric 
shielding clearly becomes more important 
with increased p, which makes close, 
strongly repulsive interactions become 
more frequent. 

Entropic character of stress. As we have 
noted, the entronic character of rubber elas- 
ticity has been well established from the 
macroscopic viewpoint since the work of 
Kelvin and Joule in the late 1850s. When 
Guth and Mark (5) introduced the picture 
of a linear macromolecule acting as an en- 
tropic spring, it was natural to put the two 
ideas together and to regard the Guth and - - 
Mark entropic spring concept as the unique 
explanation of the macroscopic entropic 
character of rubber elasticity. It should be 
emphasized, therefore, that a system of hard 
spheres connected by geometric constraints 

representing covalent bonds is also a purely 
entrovic svstem and that the monomer-level 

A ,  

picture based on steric shielding in no way 
contradicts the classic results of Kelvin and 
joule. 

Covalent bonds in compression. The con- 
cept of steric shielding explains the mech- 
anism through which the nonbonded inter- 
action makes a positive contribution to the 
stress difference t,, - t22 (Fig. 1). We now 
turn to explaining the negative contribu- 
tion made bv the bonded interaction. For 
simplicity, consider a freely jointed chain 
with bond length a. For a collection of such 
chains with no EV interactions (neither 
intra- nor interchain interactions), the 
force in each bond is positive, which corre- 
sponds to the bonds in tension (15). This 
tensile force may be traced (1 6, 17) to the 
"centrifugal force" acting on the bond from 
the thermal motion of the atoms of the 
chain. Furthermore, this tensile bond force 
is compatible with'the molecule acting as 
an entropic spring in tension, although the 
distinction between the bond force and the 
axial force must be emphasized. 

Next consider this collection of polymer 
chains with all EV interactions (intra- and 
interchain) turned on. Our simulations 
(16-18) show that as the reduced density of 
the system increases, the covalent bond 
force decreases. At realistic densities, this 
force becomes negative; that is, the bonds 
are in compression, which helps explain the 
negative contribution to the stress differ- 
ence that is made by the bonded interac- 
tions. The mechanism wherebv the bonds 
are put into compression may be explained 
in terms of the concept of intrinsic forces 
discussed below. 

Intrinsic forces. Consider, for example, a 
polymer melt of chains with bond-angle po- 

tential included. We have stated that when 
such a melt is undeformed and therefore 
macroscopically isotropic, steric shielding 
leaves the nonbonded interactions statisti- 
cally isotropic with respect to the laboratory 
frame. However, steric shielding renders the 
interaction with atom A anisotropic with 
respect to a moving local coordinate sys- 
tem in which the bonds attached to A are 
fixed. As a result, the time-averaged com- 
ponents of the force, f, acting on A that 
are referred to this intrinsic coordinate 
system at each instant are nonzero. The 
character of these intrinsic forces has been 
determined by simulation (Fig. 3).  If the 
macromolecule in a particular conforma- 
tion is visualized as a long curved cylinder, 
the intrinsic forces are distributed over its 
surface, including its capped ends, directed 
inward and approximately normal to the 
surface. It is tempting to think of these 
forces as due to the macroscopic pressure 
in the melt. However, these forces are 
relativelv insensitive to the melt vressure. 
p; they are present and have the same 
character even when p = 0 ( 1  9). From the 
character of these intrinsic forces (Fig. 3 ) ,  
it is clear that their tendency is to put the 
backbone bonds of the chain into com- 
pression, which occurs at realistic system 
densities (20). 

Chain force in systems of interacting chains. 
The results described so far, derived mainly 
from computer simulation, present a radi- 
cally different physical picture of the nature 
of stress on the atomic level from the vic- 
ture, based on entropic sprlngs in tension 
and the EVHH, that underlies the classical 
molecular theorv of rubber elasticitv, as ex- , , 
emplified by Eq. 5. A natural question that 
arises is why the classical theory agrees as 
well as it does with experimental data for 

Fig. 3. Intrinsic forces acting on a long-chain mol- 
ecule in a dense polymer system [after (19)l. Ar- 
rows represent the time-averaged resultant force, 
(f,), of all nonbonded forces acting or1 rner n ,  At 
each instant, force components are taken with 
respect to an intrinsic coordinate system for mer n 
in which covalent bonds attached to this mer are 
fixed. The intrinsic force (f,,) IS nonzero and is in 
the direction shown because of steric sh~elding. 

moderate extensions, A 2 2. [For A 2 2, 
experimental results show a decrease of the 
stress (21) below that predicted by Eq. 5; 
this softening is sometimes called the 
Mooney effect.] We have examined this 
question in (22). 

Consider first a network of noninteract- 
ing chains in which, for simplicity of dis- 
cussion, we assume that the junctions do 
not undergo thermal motion. The stress, t,J, 
in such a system can be written in the form 

where f(y) with components f,(y) is the 
force required to maintain the chain vector 
R(y)  with components R,(y) of chain y, 
and the sum is carried out over all chains of 
the system occupying the volume, u. This 
expression for the stress may be derived, for 
example, by application of the principle of 
virtual work (23). Use of Eqs. 4 and 7 
together with the affine assumption (that is, 
that the chain vectors all undereo the same " 
linear transformation that characterizes the 
macroscopic deformation) and assumptions 
OII the distribution of chain vectors in the 
reference state leads very quickly to Ecl. 5. 

In (22), we sought to determine the 
extent ;o which t11is;ype of derivation can 
be used in the presence of intra- and inter- 
chain EV interaction. For this purpose, we 
generalized the concept of chain force, de- 
rived bv Guth and Mark (5) for an isolated , , 

chain with no EV (ideal chain), to one with 
EV in interaction with many surrounding 
chains. First we found that in this case it is 
again necessary to apply tensile forces, f and 
-f, to the two end atoms of the chain to 
maintain a fixed chain vector R. However, 
the physical mechanism underlying the 
need for this force depends strongly on the 
system density, p. At low values of p, the 
forces f and -f are needed because the end 
atoms are being pulled inward by the ad- 
joining atoms of the chain; this is the same 
physical picture that underlies the kinetic 
view (24) of the Guth and h4ark entropic 
spring. However, as p increases and ap- 
proaches realistic values (p - I ) ,  the tensile 
forces are needed because the end atoms are 
being pushed inward by interchain EV in- 
teractions. 

Although the physical mechanisms for 
the chain force are therefore quite different 
between the ideal case and that with EV. 
our simulations show that as p increases, the 
force-length relation for A 2 2 approaches 
the relation for the ideal case. This result is 
in accord with what has collie to be known 
as the Flory theorem (25). Furthermore, the 
use of Eq. 7 agrees well with the stress in the 
system of interacting chains as determined 
by computer simulation. These results help 
explain why the classical theory of Eq. 5 
agrees well with experimental results for X 
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5 2, although it is based on a radically 
different picture than what is observed on 
the atomic level in our simulations. As A 
increases beyond A = 2, however, a new 
feature appears in the interacting chain 
case. The sirnulations show that the forces f 
and -f cease to be coaxial with the chain 
vector R; that is, they become equivalent to 
an axial force plus end moments M, and the 
maenitude of these moments mav be deter- - 
mined from the simulation results. The or- 
igin of the moments may be understood as 
follows: The required end forces f and -f 
are, as we have noted, due to the EV inter- 
actions of the given chain with the sur- 
rounding chains. For small A, the surround- 
ing chains are isotropically distributed and 
the force f is coaxial with R. However, for A 
2 2, anisotropy in these interactions pro- 
duces the need for end moments in addition 
to an axial force. Furthermore, it is found by 
application of Eq. 7 that these moments are 
in a direction such that they cause a soft- 
ening in the predicted stress-extension re- 
lation, a softening in qualitative and semi- 
quantitative accord with the experimental- 
ly observed Mooney effect (22). This soft- 
ening mechanism, based on anisotropic 
interchain interactions, is related to that 
put forth some time ago by DiMarzio (in 
26) that is based on the change of packing 
entropy with deformation. In a recent paper 
(27), DiMarzio concludes that the packing 
entropy effect is only one of three impor- 
tant effects in rubber elasticity [the other 
two being the chain confinement effect, 
often modeled by tubes (28), and the en- 
tanglement effect, sornetirnes lnodeled by 
slip rings (29)] and that a unified theory 
incorporating all three effects in a consis- 
tent rnanner is needed. 

Intrinsic stresses. Alone with the discus- " 
sion of intrinsic forces given above, we have 
also found it useful to introduce the concent 
of intrinsic stresses. These are defined in 
the following way: As a consequence of the 
virial theorem, the stress t, in a system of 
interacting atoms at temperature T can be 
written in the form 

where the sum is over all of the atoms in the 
basic cell of volume u. The quantity 
(u,.(P)) is the time average of the instanta- 
neous contribution that atom p makes to 
the dimensionless stress, uti,/ltT. The explic- 
it form of u,,(P) depends, of course, on the 
nature of the interactions among the atoms 
of the system. For an ideal gas, u,(P) = 

-S,]. For a system with general pair inter- 
actions, the expression for u,(P) can be 
deduced directly from Eq. 6; for a polymer 
model with three-body potentials used to 
express valence angle constraints, the ex- 

plicit form of a,(@) is given in (1 1 ,  12). 
Both u,(P) and t ,  in Eq. 8 are referred to 

the same fixed laboratory frame, x,, i = 1, 2, 
3. Because we are interested in the effect of 
the covalent structure upon the interac- 
tions at each time step of the sirnulation, we 
refer the tensor u,,(P) to a local coordinate 
system, R,(P),  where r = 1, 2, 3, which 
moves so that it always bears a fixed rela- 
tion to the covalent bonds attached to mer 
p. The components of the iner stress that 
are referred to x,(P) are denoted by G,,(P), 
and the time average of u,,(P) over all of 
the monomers of the system is denoted by 
':'o,,. We refer to ':'o,, as the intrinsic mono- 
mer stress (IMS). As is the case for the 
macroscopic stress, we find that at liquid- 
like densities the nonbonded interactions 
make the dominant contribution to the de- 
viatoric part of the IMS. 

This concept provides a clear picture, on 
the atomic level, of the nature of stress in a 
rubberlike solid. As an illustration, we have 
performed computer simulations (30) of a 
network model and of the corresponding 
melt in which all chains are allowed to 
move freely with all other parameters un- 
changed. In the melt, the macroscopic state 
of stress in equilibrium is purely isotropic; 
the network model, when extended, shows 
the expected behavior of the deviatoric 
stress, or stress difference t l ,  - tz2, as a 
function of the extension ratio, A. However, 
the IMS "'o,, is identical, within numerical 
error, in the rnelt and deforrned networks 
and is independent of A in the latter. We 
may think of each mer of either network or 
melt and its associated covalent bonds as a 
carrier of an IMS whose principal directions 

Fig. 4. Effect of deformat~on on IMS [after (36)l. 
Two-headed arrows schematically represent the 
pr~ncipal directions and values of the IMS. The 
principal values are the same for all mers in the 
system [except for chaln ends (36)l. (A) In the 
undeformed system, principal d~rections are iso- 
tropically d~stributed. (B) When the system is de- 
formed, the principal direction distribution be- 
comes anisotropic 

bear a fixed relation to the covalent struc- 
ture. In the melt the covalent structure ro- 
tates freely in space, and therefore the effect 
of the IMS. when referred back to the lab- 
oratory frame, is purely isotropic. The mo- 
bility of the covalent structure in the net- 
work is restricted because of the chain cross 
links. In the reference configuration of the 
network. the covalent structure orientations 
are isotropically distributed rn space and the 
resultant of the IMS contributions remains 
isotropic. However, when the network is 
stretched, the covalent structure becomes 
anisotropic and the resultant of the IMS 
contributions gains an anisotropic compo- 
nent (Fig. 4). Therefore, the word "intrin- 
sic" in the terlninology for :ko,, is seen from 
these sirnulations to have dual significance: 
It is the monomer stress referred to a coor- 

Fig. 5. Time history of macroscopic stress and of 
IMS during a loading and unloading process [after 
(36)l. Results of a nonequilibrium molecular dy- 
namics simulation of a melt of freely rotating 
chains with N = 40 bonds each and wlth param- 
eter values of the freely rotating chain model of 
Takeuchi and Roe (39) at T = 172 K. For these 
parameter values, ( m ~ ~ l ~ ) ~ / ~  = 2 ps, where m is 
the monomer mass. Melt is subjected to a con- 
stant-volume strain in thex, direction at the rate of 
€, = 0.01 ps-I fort 5 42 ps, followed by unload- 
ing with E" = 0. (A) Macroscopic stress difference, 
t ,, - t,,, together with separate contributions 
made by bonded and nonbonded interactions. (B) 
IMS history during the same loading and unload- 
ing process. By definition (Eq. 8), IMS compo- 
nents *u, (no sum) are nond~mensional. Solid lines 
represent values of "a,, for the corresponding 
equilibrium melt; dashed l~nes represent simula- 
tion results for the values of 'u,, in the stretched 
model network of the same chain system. 
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dinate system that bears a fixed relation to 
the covalent structure, and it has the same 
value in a stretched network that it has in 
the corresponding polymer melt. 

Viscoelasticity of polymer melts. The 
work described so far has focused on sys- 
tems in eauilibrium. We  have, more re- 
cently, developed a nonequilibrium mo- 
lecular dynamics (12, 31, 32) algorithm 
for the simulation of the viscoelasticity of 
polymer melts. This algorithm can be 
used, for example, to determine the stress 
relaxation in a melt after it has been sub- 
iected to a shear or a constant-volume 
elongation that rises rapidly to a peak 
value and is then maintained constant. 
Among the main results from these studies 
are the following: 

1) Nonbonded interactions make the 
dominant contribution to the deviatoric 
stress throughout the relaxation process, 
except for a very brief initial period (Fig. 
5A).  This finding is contrary to the gen- 
erally accepted view that adopts the 
EVHH and entropic spring physical pic- 
ture but is in agreement with recent results 
of Fixman (33), who uses a different model 
and algorithm. 

2 )  For svstems in equilibrium we found 
that, although the stres;es were due to non- 
bonded interactions on the atomic level, 
the entropic spring concept provided an 
effective computational device for these 
stresses. In contrast, for the stress relaxation 
process the simulations (32) reveal that the 
entropic spring concept, as embodied in the 
Rouse chain model (34), greatly underesti- 
mates the actual stress until it has decaved 
to the rubbery regime. 

3) The simulations (12) satisfy the 
time-temperature equivalence principle, 
and the required temperature-dependent 
shift factors obev the William-Landel-Ferrv 
(WLF) equation' as observed in real system; 
(35). 

4 )  The concept of IMS developed ear- 
lier for eauilibrium svstems was also found 
to apply to these nonequilibrium processes. 
During the stress relaxation process in 
which the macroscopic deviatoric stress de- 
cays by a factor of 20, the IMS values are 
found to remain substantially constant (Fig. 
5B). We are thus led to still another inter- 
uretation of the term "intrinsic." This def- 
inition leads to a new monomer-level view 
of the later staees of stress relaxation " 

through the randomization of the orienta- 
tion of the IMS tensors (that is, from Fig. 
4B to Fig. 4A),  which parallels completely a 
corresponding view of birefringence decay 
for polymers in which the polarizability ten- 
sor is also an intrinsic monomer tensor. 
This new view leads to a simple expression 
for the stress-optical coefficient in the rub- 
bery regime in terms of the monomer po- 
larizability and the IMS (36). 

Conclusions 

The view of stress in dense polymer sys- 
tems on  the atomic or monomer level that 
arises from comDuter simulations reveals 
some unexpected features: ( i )  The process 
of steric shielding renders anisotropic the 
contribution that the two-body non- 
bonded interactions make to the stress in 
deformed systems. (ii) A t  liquidlike den- 
sities, the covalent bonds of the backbone 
chains are in compression. As a result of 
this compression, these bonds make a neg- 
ative contribution to the tensile stress dif- 
ference in an  elongational deformation. 
(iii) IMS plays an  important role in un- 
detstanding the stress in dense polymer 
svstems. 

In spite of the great differences between 
this monomer-level uicture and the classi- 
cal molecular-level description based on en- 
tropic springs and the EVHH, simulations 
show that the latter serves as an accurate 
method for computing the stress in moder- 
ately deformed cross-linked systems in equi- 
librium and in the later stages of stress 
relaxation in melts. Calculations based on 
the classical picture become less accurate 
for cross-linked systems at larger elonga- 
tions and greatly underestimate the stress in 
the earlier stages of stress relaxation in 
melts. A theoretical analysis that would 
clearly delineate the conditions under 
which the classical molecular approach is 
accurate would be most valuable. 

The central role played by EV interac- 
tions in stress production as illustrated in 
this monomer-level descri~tion makes clear 
the importance of p, the reduced density, or 
+, the packing fraction of the system. The 
importance of these parameters, in turn, 
helps to explain the dramatic effects of high 
pressure (37, 38) on the mechanical behav- 
ior of polymeric systems, effects that are 
difficult to explain solely in terms of the 
entropic spring plus EVHH picture. 
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