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j&enopus laevis (the African clawed toad) 
is widely used for the study of vertebrate 
development because the embryos are eas­
ily manipulated and accessible at all stag­
es. Gene products that mediate inductive 
and morphogenetic events in the early 
Xenopus embryo have been identified. 
However, it has only been possible to 
study the function of products of these 
cloned genes by analyzing transiently ex­
pressed RNA or DNA injected into fertil­
ized eggs or early cleavage stage embryos. 
Injected RNAs are translated immediately 
and are often degraded before the induc­
tive interactions and morphogenesis of the 
gastrula stage have begun. Thus, although 
RNA injection can be effectively used to 
study maternally expressed genes, the en­
dogenous products of which are present at 
early stages in the embryo, it is unfavor­
able for the study of zygotic gene products 
expressed after the mid-blastula transition, 
which occurs when the embryo has about 
4000 cells. DNA injection has been used 
for analyzing zygotic gene expression, but 
the usefulness of this approach has been 
limited by the extremely mosaic expres-
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sion of such DNAs in the embryos after 
injection. 

Transgenesis has been attempted in Xe­
nopus by injecting plasmid DNA into fertil­
ized eggs, raising embryos to adults, breed­
ing the offspring, and screening them for 
transmission of injected sequences (1). 
However, the long generation time of Xe­
nopus (8 months minimum) makes this ap­
proach cumbersome, and in the test case, 
the adults produced were mosaic for the 
introduced sequences, integrated the DNA 
into the germ line only at low frequency, 
and produced offspring that failed to express 
the introduced reporter gene. 

We have developed an alternate ap­
proach for transgenesis in Xenopus. Cul­
tured cells are transfected with reporter se­
quences, stable integrants are selected, and 
these cells are used as donors for nuclei that 
are then transplanted into unfertilized eggs. 
Nuclei from various Xenopus cells are able 
to support embryonic development after 
such transplantations, although the extent 
of development depends on the prolifera­
tive and differentiated state of the donor 
cells (2). 

The Xenopus cell line X-C was generated 
from stage 34-38 whole tadpoles (3). Like 
other established lines, the line is slightly 
aneuploid (4). We used lipofection to stably 

Transgenic X. laevis Embryos from Eggs 
Transplanted with Nuclei of Transfected 

Cultured Cells 
Kristen L. Kroll* and John C. Gerhart 

Transgenic Xenopus laevis embryos were produced by transplantation of transfected 
cultured cell nuclei into unfertilized eggs. A Xenopus cell line, X-C, was stably transfected 
with plasmids containing a hygromycin-resistance gene and genes for either 0-galacto-
sidase with a heat shock promoter or chloramphenicol acetyltransferase (CAT) with a 
muscle-specific actin promoter. Nuclei transplanted from these cells into unfertilized eggs 
directed development of embryos containing stably integrated copies of the plasmids in 
each cell. Transgenic embryos showed somite-specific expression of CAT and uniform 
expression of 0-galactosidase. Transgenic embryos produced by nuclear transplantation 
should be useful for testing the function of cloned genes in amphibian development. 

650 SCIENCE • VOL. 266 • 28 OCTOBER 1994 



transfect X-C cells (3) with the linearized 
constructs pRLCAR and pRLgal, which 
both contain the hygromycin B phospho- 
transferase gene (Fig. 1A) (5). The con- 
struct pRLCAR also encodes a CAT report- 
er under the control of a Xenom muscle 
actin promoter; pRLgal encodes a P-galac- 
tosidase gene controlled by a Xenopus heat 
shock (HSP 70) promoter. Stably trans- 
fected cells were selected in the presence of 
hygromycin. Hygromycin B concentrations 
above 550 d m 1  were toxic for nontrans- 
fected X-C cells, whereas uansfected cells 
were fully resistant (Fig. 1B). Stably trans- 
fected cell populations maintained resis- 
tance over several months in culture and 
after mowth in nonselective media. indicat- " 
ing stable integration. Plasmid sequences 
were detected in long-term-resistant cells 
(6). The stable transfection efficiency was 
2.8% for pRLgal (7). 

To test whether hygromycin-selected 
cells stably uansfected with pRLgal would 
express a cotransfected P-galactosidase re- 
porter gene, cells were exposed to the vital 
substrate fluorescein di-(P-D-galactopy- 
ranoside) (FDG) (8). Intracellular P-galac- 
tosidase cleaves FDG to produce fluoresce- 
in, which is transiently retained within the 
cell. An average of 23% of pRLgal-trans- 
fected X-C cells were FDG positive (9), 
indicating effective cotransfection. Some 
heterogeneity with respect to the intensity 
of fluorescence was detected in positive 
cells, perhaps representing variation in the 
number of DNA molecules introduced into 
the cell (lo), the number of copies main- 
tained, or the amount of expression from 
each plasmid. It is possible that transformed 
cells could express too little P-galactosidase 
to be detected by FDG or that cells may 
have lost the transformed gene. 

Nuclei from X-C cells stably transfected 
with pRLCAR or pRLgal were used for 
transplantation into unfertilized eggs to 
produce transgenic embryos. The classical 
transplantation technique (I 1 ) requires 
that each individual donor cell be broken 
manuallv. We chose instead to weaken the 
cell membrane with lysolecithin (L-a-lyso- 
phosphatidylcholine), allowing many cells 
to be drawn into the needle at one time and 
their intact nuclei injected singly and suc- 
cessively into unfertilized eggs (12). This 
modification allows several hundred nuclei 
per hour to be transplanted. When gastrula 
stage cells were so used as the source of 
nuclei, embryonic development of trans- 
planted eggs was as frequent and as ad- 
vanced as with the classical method. 

Both enucleated and nonenucleated un- 
fertilized eggs were used as hosts for trans- 
plantations. Nonenucleated eggs were often 
used because embryos from these transplan- 
tations developed to more advanced stages; 
this is presumably due to the ability of the 

haploid egg chromosomes to cover deficien- 
cies of the aneuploid donor nucleus. The 
pseudotriploid embryos (13) generated by 
this type of transplantation are morpholog- 
ically normal, as are triploids produced by 
other mechanisms, but do not develop to 
adulthood as do full triploids (14). 

Both pRLCAR and pRLgal were ex- 
pressed nonmosaically in transgenic embry- 
os derived from nuclear transplantation of 
stably transfected cells. After transplanta- 
tion into nonenucleated host eggs, develop- 
ment of embryos frequently reached neurula 

and tailbud stages and both reporter genes 
were expressed. CAT protein was detected 
by immunocytochemistry (15) in all cells of 
the somites of neurula stage transgenic em- 
bryos expressing pRLCAR (Fig. 2, D and 
E). In contrast, neurula stage embryos de- 
rived from pRLCAR plasmid injections 
into fertilized eggs showed highly mosaic 
although somite-specific CAT expression 
(Fig. 2, A and B). Only about 5% of the 
somite cells (an average of 12 cells per 
embryo) were CAT positive when 100 pg of 
DNA was injected per fertilized egg. Higher 

Fig. 1. X-C cell line stably transfected with A 
pRLCAR and pRLgal vectors. (A) Structure of 
plasmids pRLgal (top) and pRLCAR (bottom). 
Both plasmids contain the hygromycin B phos- 
photr&sferase gene (gray) &d thymidine kinase 
promoter and polyadenylation signals (solid). The 
plasmid pRLgal contains a X. laevis heat shock B 
promoter (H* 70, vertical stripe), a nuclear local- 
ization signal (NLS) and p-galactosidase reporter .g 
gene, and SV40 polyadenylation signals (diagonal % 250 
stripe). We linearized pRLgal with Asp 700 (A) and T Xba I 0() for transfections. The plasmid pRLCAR 
contains a cardiac actin promoter and CAT re- C, 150. 
porter and was linearized with Sph I (S). N, Not I;  ;% 
K, Kpn I. (B) Resistance of stably transfected and s loo. 
nontransfected X-C cells to hygromycin B. We 
seeded 60-mm plates with 4 x lo5 nontrans- $ 
fected X-C cells (0) or X-C cells previously trans- 
fected with pRLgal and selected with hygromycin 0 200 400 600 800 

B @) as described (3). Monolayers were treated Hygromycin B (pcjml) 

with hygromycin B-containing media at the doses shown for 14 days. We counted 500 to 1000 cells to 
derive an average count (1 O4 cells per milliliter) for each sample. Each data point represents the average 
of three to four samples from two separate experiments. Crosses show the range of data obtained. 

I 
Fig. 2. ~njected and transgenic neurulae expressing the pRLCAR vector. (A and 8) Neurulae inject& as: 
fertilized eggs with 100 pg (A) and 300 pg (B) of pRLCARSph I plasmid. (C to E) Transgenic neurulae 
generated after nudear transplantations of pRLCAR-transfected X-C cells into nonenucleated eggs show 
somite-specific expression of CAT. In (C) one of two normal, neurula stage (stage 20-21) nuclear 
transplant recipient embryos shown is expressing CAT only in somites on one side of the body axis. @) 
and (E) are side views of a transgenic embryo showing CAT expression in differentiated and undifferen- 
tiated somitic tissue. 
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doses of DNA (300 to 400 pg) increased the 
frequency of CAT positive cells slightly (to 
approximately 8% of somite cells), but em- 
bryonic development was frequently arrest- 
ed (Fig. 2B). Thus, nuclear transplantation- 
based transgenesis produces embryos in 
which the spatial and temporal regulation 
of pRLCAR is preserved, expression is non- 
mosaic, and development proceeds through 
the stages when induction and morphogen- 
esis occur. Transgenic embryos expressing 
pRLgal were also generated. Some of these 
embryos expressed P-galactosidase uniform- 
ly in  each cell as expected (Table 2; P- 
galactosidase expression detected with X- 
gal) because the HSP70 promoter is not 
tissue-s~ecific. 

Transgenic embryos expressing pRL- 
CAR and pRLgal were produced at  consis- 
tent frequencies: 20 to 50 neurula stage 
embryos resulted from each experiment in 
which 200 to 500 nuclei were transplanted 
and, of the surviving neurulae, 24% (6 to 12 
embrvos) exuressed the uRLCAR trans- 

? ,  . 
gene. Transgenic embryos expressing pRL- 
CAR were identified at  a somewhat higher 

v 

frequency than those expressing pRLgal 
(Tables 1 and 2). This is urobablv due to 
differences in  promoter strekgth or sensitiv- 
ity of the assays used to detect transgene 
expression. 

Some transgenic embryos expressed re- 
porter constructs uniformly, whereas others 
exhibited chimeric expression (Tables 1 
and 2). Most commonly, chimeric embryos 
expressed the transgene on  only one side of 
the body axis (Fig. 2C). This chimerism 
(denoted as 50 to 95% expression in the 
Tables) is distinguishable from the mosaic - 
expression resulting from plasmid injec- 
tions. Right-left chimerism is urobablv due - 
to  segregation of chromosomes of the trans- 
planted nucleus to  only one blastomere at  
first cleavage, whereas those of the replicat- 
ed haploid egg nucleus segregate to  both 
blastomeres. Unilateral segregation occurs 
when transplanted nuclei from slowly divid- 
ing cells (X-C has a cell cycle of 35 to 40 
hours) are unable to adjust to the more 
rapid 80-min cell cycle of the fertilized egg 
(1 6). In such right-left chimeras, the side of 
the body axis expressing the reporter gene is 
pseudotriploid whereas the nonexpressing 
side is haploid. 

Some embryos produced by transplanta- 
tions into nonenucleated eggs developed to 
feeding tadpole stages and lived about 1 
month. They had long, well-differentiated 
body axes and showed n o  signs of haploid 
syndrome, although there were subtle ana- 
tomical abnormalities. Of the 37 neurulae 
(Table 2) from nonenucleated hosts, 21 

Table 1. Somite-specific expression of a CAT reporter gene in transgenic neurulae after nuclear 
transplantation of pRLCAR-transfected cells. Transgenic embryos were produced (3, 12), raised to stage 
19-20, and immunostained to detect CAT (15). Three experiments (Exp) are shown. 

Number of Variation? somite-specific CAT expression* 
N e u r u l a e  CAT-expressing  ex^ produced 

embryos (%) 95-100% 50-95% 10-50% 1-10% 

E 1 468 53 13 (25) 2 (1 5) 7(54) 4(31) 0 
E 2 360 37 9 (24) 1 (11) 2(22) 6(67) 0 
E 3 21 6 17 4 (24) 1 (25) 2(50) l (25)  0 

*CAT-expressing embryos were classified into four categories; the CAT-expressing region of each embryo was scored 
as a percentage of the total somitic tissue in the embryo. The number of embryos in each catgory is shown; in 
parentheses, the number is expressed as a percentage of the total number of CAT-expressing embryos obtained in each 
experiment. 

Table 2. Expression of a p-galactosidase reporter gene in transgenic embryos after nuclear transplan- 
tation into enucleated and nonenucleated unfertilized eggs:The cells transfected with pRLpgal (3) were 
used to produce transgenic embryos (12). Embryos were raised to neurula (stage 18-20, scored below) 
through tadpole stages and were fixed and stained with X-gal(20) when they appeared unlikely to develop 
further. Data for nonenucleated hosts is a summary of two experiments; data for enucleated hosts is a 
summary of four experiments. 

Number Of p-gal- Extent of p-galactosidase expression* actosidase-ex- 
~ o s t  N e u r u l a e  pressing neurulae Attempts produced (% of embryos 

scored) 95-100% 50-95% 10-50% 1-10% 

Nonenucleated 61 2 94 7/57 (1 2) 2(29) 2(29) 3/43) 0 
unfertilized egg 

Enucleated 1008 65 33/65 (51) 20 (61) 9 (27) 1 (3) 3 (9) 
unfertilized egg 

*Embryos were scored for extent of expression and classified into categories, as described in Table 1 ,  after X-gal staining 
before clearing. The number of embryos in each category is shown and is expressed in parentheses as a percentage of 
the total number of p-galactosidase-expressing neurulae obtained. 

were stained at tailbud stage for P-galacto- 
sidase; three were positive. T h e  remaining 
16 embryos were raised to tadpole stages, a t  
which time three began to feed; one of 
these expressed the transgene. 

Enucleated unfertilized eggs were also 
used as hosts for transplantations. Enucle- 
ation was accomplished by ultraviolet irra- 
diation of the animal hemisphere (17). 
Transplantation of nuclei into these hosts 
resulted in high frequencies of transgene 
exuression and less chimeric exuression 
(Table 2). However, fewer embryos sur- 
vived, and those that did exhibited mor- 
phological abnormalities more frequently 
and did not develop beyond neurula stages. 
These embryos should make good candi- 
dates for serial transplantation (retransplan- 
tation of nuclei). which is known to in- , , 

crease the frequency of development to ad- 
vanced stages (18). Therefore. even in an , , 

enucleatedv background, the'  transfected 
pseudodiploid X-C nucleus could support 
development to gastrula and neurula stages, 
by which time expression of many zygotic 
genes, such as that for muscle actin, has 
begun. 

The  nuclear transplantation-based trans- 
genic approach described here allows Xeno- 
pus embryos to be produced that express 
introduced genes nonmosaically with the ap- 
propriate spatial and temporal regulation. 
This transgenic approach should be useful 
both for the ectopic expression of genes for 
dominant interference and blocking experi- 
ments and to analvze suatial and temuoral , . 
regulation by promoters in the embryo. The  
use of euploid donor cell types (such as trans- 
fected embryonic cells or sperm nuclei) or 
the use of oocytes rather than eggs as hosts 
(19) may improve the extent of develop- 
ment after transplantation. Alternative inte- 
gration strategies may also increase the fre- 
quency of transgenesis. 
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PHAS-I as a Link Between Mitogen-Activated 
Protein Kinase and Translation Initiation 
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PHAS-I is a heat-stable protein (relative molecular mass -12,400) found in many tissues. 
It is rapidly phosphorylated in rat adipocytes incubated with insulin or growth factors. 
Nonphosphorylated PHAS-I bound to initiation factor 4E (elF-4E) and inhibited protein 
synthesis. Serine-64 in PHAS-I was rapidly phosphorylated by mitogen-activated (MAP) 
kinase, the maior insulin-stimulated PHAS-I kinase in adipocyte extracts. Results obtained 
with antibodies, immobilized PHAS-I, and a messenger RNA cap affinity resin indicated 
that PHAS-I did not bind elF-4E when serine-64 was phosphorylated. Thus, PHAS-I may 
be a key mediator of the stimulation of protein synthesis by the diverse group of agents 
and stimuli that activate MAP kinase. 

PHAS-I  (1 was identified in rat a d i ~ o -  . , 

cytes as one of several proteins that were 
phosphorylated in response to insulin (2). 
Rat PHAS-I is 93% identical to 4E-BPI, an 
eIF-4E binding protein cloned from a hu- 
man placenta complementary DNA library 
(3). The  mRNA cap-binding protein eIF- 
4E, which forms part of the larger eIF-4F 
complex, is limiting for the initiation step 
of translation, which is in  turn usually rate- 
limiting for translation (4). PHAS-I (4E- 
BPI) inhibits eIF-4E function as it de- 
creases translation of capped mRNA, both 
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in  vitro and when expressed in cultured 
osteosarcoma cells (3). Moreover, increased 
phosphorylation of PHAS-I in adipocytes 
with insulin is associated with decreased 
binding of PHAS-I to eIF-4E, indicating 
that the stimulation of translation by insu- 
lin may result from the release of eIF-4E 
from inhibition by PHAS-I (3). This mech- 
anism would explain earlier findings that 
were suggestive of a stimulatory effect of 
insulin on  eIF-4F activity (5). W e  found 
that PHAS-I was regulated by phosphoryl- 
ation by MAP kinase. Thus, PHAS-I ap- 
pears to mediate the regulation. of protein 
synthesis by the large and diverse group of 
hormones, growth factors, and other stimuli 
that signal through the MAP kinase path- 
way (6). 

T h e  association of PHAS-I with eIF-4E 
was regulated by insulin in murine 3T3-L1 
adipocytes. Insulin had n o  effect o n  the 
amount of eIF-4E in extracts of these cells, 
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