
the surface of CST-treated cells may have 
been more extensively folded and therefore 
competent for transport (Fig. 3 A). Alterna­
tively, they may have been incompletely 
folded molecules not retained in the ER by 
a CST-compromised quality control system. 
Calnexin has been shown to be part of the 
retention apparatus present in the ER (29, 
20). The observation that incorporation of 
G protein from the cell surface into virus 
particles drops by 90% in the presence of 
CST suggests that much of it is, in fact, 
defective (21). The apparent transport of 
defective G protein to the cell surface sug­
gests that calnexin serves not only as a 
folding factor for G protein but also as a 
retention factor. 

Our results reveal that calnexin is a true 
chaperone in the sense that it associates 
transiently with G protein and promotes its 
folding. Because our data were obtained in 
living cells, they are likely to reflect a phys­
iologically relevant activity. Our observa­
tions, moreover, provide evidence for se­
quential BiP and calnexin action during G 
protein folding in the ER. Indications of 
ordered chaperone binding have been 
found in mitochondria in vivo and for pro­
tein refolding in the presence of bacterial 
chaperones in vitro (22, 23). In all these 
cases, including that of G protein, the ini­
tial interaction involves a member of the 
Hsp70 family of chaperones. In the mito­
chondrial and bacterial systems, subsequent 
interaction occurs with a member of the 
Hsp60 family. In the ER, which seems to be 
devoid of Hsp60 homologs, calnexin may 
have the role of secondary chaperone. 

Although a large number of proteins 
have been shown to associate transiently 
with calnexin, including about 20 different 
proteins in CHO cells (Fig. 2) (8), only 
some are likely to be strictly dependent on 
it for folding. In fact, G protein belongs to 
a subfraction of glycoproteins whose folding 
is inhibited by CST and by other glucosi-
dase inhibitors (13, 24). Among the pro­
teins that can fold independently is HA. 
Although it normally forms a complex with 
calnexin, HA folding is not inhibited by 
CST (6). Apparently calnexin constitutes a 
link in the folding, assembly, and retention 
machinery of the ER that is used by many 
glycoproteins but is essential for only some. 
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two structures are also involved in nonmo-
tor or cognitive function. For example, Al­
exander, DeLong, and Strick (]) proposed 
that the basal ganglia participate in five 
separate loops with motor and nonmotor 
areas of the cerebral cortex. According to 
their scheme, the nonmotor output of the 
basal ganglia targets three cortical areas via 
the thalamus: dorsolateral prefrontal cortex, 
lateral orbitofrontal cortex, and anterior 
cingulate cortex. As a result of these con­
nections, the output of the basal ganglia is 

Anatomical Evidence for Cerebellar and Basal 
Ganglia Involvement in Higher Cognitive 

Function 
Frank A. Middleton and Peter L. Strick* 

The possibility that neurons in the basal ganglia and cerebellum innervate areas of the 
cerebral cortex that are involved in cognitive function has been a controversial subject. 
Here, retrograde transneuronal transport of herpes simplex virus type 1 (HSV1) was used 
to identify subcortical neurons that project via the thalamus to area 46 of the primate 
prefrontal cortex. This cortical area is known to be involved in spatial working memory. 
Many neurons in restricted regions of the dentate nucleus of the cerebellum and in the 
internal segment of the globus pallidus were labeled by transneuronal transport of virus 
from area 46. The location of these neurons was different from those labeled after HSV1 
transport from motor areas of the cerebral cortex. These observations define an ana­
tomical substrate for the involvement of basal ganglia and cerebellar output in higher 
cognitive function. 



thought to influence the higher order func- 
tions subserved by each of these cortical 
areas. 

Similarly, Leiner, Leiner, and Dow (2) 
have suggested that cerebellar output is di- 
rected to wrefrontal as well as motor areas of 
the cerebial cortex. They noted that, in the 
course of hominid evolution, the lateral 
output nucleus of the cerebellum (the den- 
tate) undergoes a marked expansion that 
parallels the expansion of cerebral cortex in 
the frontal lobe. They argued that the in- 
crease in the size of the dentate is accom- 
panied by an increase in the extent of the 
cortical areas in the frontal lobe that are 
influenced bv dentate o u t ~ u t .  As a conse- 
quence, they proposed that cerebellar func- 
tion in humans has exwanded to include 
involvement in certain language and cog- 
nitive tasks. The absence of experimental 
anatomical support for a cerebellar projec- 
tion to the prefrontal cortex via the thala- 
mus has led to considerable controversv 
concerning the participation of the cerebel- 
lum in cognitive processing (2, 3) .  

In this study we examined whether the 
dorsolateral prefrontal cortex (dlPFC) is the 
target of output from the basal ganglia and 
the cerebellum. We chose to study the 
dlPFC, Walker's area 46 (4) .  because it is . , .  
one of the best-characterized nonmotor re- 
gions of the frontal lobe (5). There is con- 
siderable evidence that the dlPFC is in- 
volved in "spatial working memory" and 
guides behavior on the basis of transientlv - 
stored information rather than immediate 
external cues (6). The dlPFC also appears 
to be involved in planning the order and 
timing of future behavior (5). 

Many output neurons in the basal gan- 
glia and cerebellum project to thalamic 
neurons which, in turn, innervate regions of 
the cerebral cortex. To examine whether 
some of these basal ganglia and cerebellar 
neurons connect with thalamic neurons 
that innervate the dlPFC, we injected the 
McIntyre-B strain of herpes simplex virus 
type 1 (HSV1) into area 46 of cebus mon- 
keys (Cebus apella, n = 3) (Fig. 1) (7). The 
McIntyre-B strain of HSVl is transported 
transneuronally in the retrograde direction 
by neurons in cerebello-thalamocortical 
and pallido-thalamocortical pathways of 
primates (8, 9). All injection sites were 
confined to the region of area 46 in the 
principal sulcus (PS) and did not spread to 
adjacent cortical regions, such as the frontal 
eye field (FEF) in area 8 (Fig. 1)  (1 0). 

The cortical iniections of HSVl labeled 
many neurons in portions of three thalamic 
nuclei known to innervate the dlPFC: ven- 
tralis anterior pars parvocellularis (VApc), 
medialis dorsalis (MD), and ventralis later- 
alis pars caudalis (VLc) (I 1 ). In addition, 
retrograde transneuronal transport of HSV 1 
from the dlPFC labeled many neurons in 

R+' 
5 rnrn 

IM 
5 rnrn 

Fig. 1. HSVl injection sites along the principal sulcus in a cebus monkey (Fl). (A) Lateral view of the 
cebus brain. (6) Enlargement of the area enclosed by the dashed line in (A). Solid circles represent needle 
entry points, and the shaded area indicates the spread of HSVl from the injection sites. The dotted line 
defines the boundary between Walker's areas 46 and 8 in F1. The numbered arrows indicate the location 
of sections in (C). (C) Coronal sections through the injection site. Heavy lines indicate needle tracks, and 
the shaded areas indicate the spread of HSVl. ArS, superior limb of the arcuate sulcus; CS, central 
sulcus; D, dorsal; Ips, intraparietal sulcus; LS, lateral sulcus; M ,  medial; PS, principal sulcus; R, rostral; 
SPcD, superior precentral dimple; STS, superior temporal sulcus. 

Fig. 2. Labeled neurons in 
the dentate nucleus. (Top) 3 Coronal sections at three 
representative levels through 
the dentate. The solid dots 

I mm indicate the positions of neu- 
rons labeled by retrograde 

-. . . transneuronal transport ob- 
served in five sections 

(225-233) spaced 100 to 150 km apart 
(section numbers are at the 
bottom in parentheses). The 

..:.:; . 3 9 arrow indicates the location 
..:. .: of the labeled neuron shown 

in Fig. 3A. (Bottom) Plot of 
(235-243) the rostro-caudal distribu- 

tion of labeled cells in the 
dentate. The location of .. - . . some sections is shown 

:\ . along the abscissa. L, lateral. 

(245-253) 

230 240 250 
Rostral pole Caudal pole 
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the dentate nucleus of the cerebellum 
(mean = 122, range = 91-181) and in the 
internal segment of the globus pallidus 
(GPi) (mean = 332, range = 318-346) 
(12). Most of the labeled neurons in the 
dentate were found contralateral to the cor- 
tical injection site. These neurons were 
confined to the most ventral portion of the 
nucleus and were concentrated rostro-cau- 
dally in the middle third of the dentate (Fig. 
2). This region of the dentate clearly differs 
from the more dorsal regions of this nucleus, 
which were labeled by retrograde transneu- 
ronal transport from the primary motor cor- 
tex (Ml) or ventral premotor area (PMv) 
(13), and the more caudal region of the 
dentate, which was labeled by retrograde 
transneuronal transport from the FEF (14). 
The dorsal part of the dentate is where 
neurons with marked changes in activity 
during single joint or reaching movements 
have been found ( 15). 

The labeled neurons in the dentate had 
round cell bodies, with multiple dendrites 
originating from the soma (Fig. 3A), fea- 
tures typical of dentate neurons that 
project to the thalamus (13, 14). Prior 
studies have shown that some of these 
dentate neurons terminate in the MD and 
VLc (16, 17). Thus, our results provide 
evidence that the dlPFC is a cortical tar- 
get of a cerebello-thalamocortical pathway 
from the dentate, and that this pathway is 
distinct from those innervating motor ar- 
eas of the cerebral cortex. 

In the GPi, labeled neurons were found 
largely ipsilateral to the cortical injection 
site in the dlPFC. These neurons were lo- 
cated in the most dorsomedial region of the 
inner and outer portions of the internal 
segment and were concentrated rostro-cau- 
dally in the middle third of the nucleus (Fig. 
4). This region of the GPi clearly differs 
from the more ventral and lateral regions of 
the GPi which were labeled by retrograde 

Fig. 3. Neurons labeled by retrograde transneu- 
ronal transport of HSVl from area 46. (A) Dentate 
neuron. The location of the cell is indicated by the 
arrow in Fig. 2. (B) GPi neuron. The location of the 
cell is indicated by the arrow in Fig. 4. Scale bar, 
50 pm. 

transneuronal transport from MI, PMv, or 
the supplementary motor area (SMA) (1 3). 
These more ventral and lateral regions of 
the GPi contain neurons that display 
marked changes in activity during single 
joint or reaching movements (18). 

Labeled GPi neurons had elliptical cell 
bodies, with one or more dendrites radiating 
from each pole of the soma (Fig. 3B), fea- 
tures typical of GPi neurons that project to 
the thalamus (19). It is generally agreed 
that some of these GPi neurons terminate 
in the VApc (20). Thus, our results provide 
evidence that the dlPFC is a cortical target 
of a distinct pallido-thalamocortical path- 
way from the GPi. 

These observations have important im- 
plications for theories about the functional 
organization of basal ganglia and cerebellar 
loops with the cerebral cortex. According 
to one view, these loops provide a means for 
linking widespread regions of the cerebral 
cortex, such as prefrontal and posterior pa- 
rietal cortex, with motor output at the level 
of the primary motor cortex. Such loops 
would serve to "funnel" information into 
the motor system to generate commands for 
movement (21 ). Our results support an al- 
ternative view (1, 2), one in which part of 
the output of the basal ganglia and cerebel- 
lum is directed back to regions of the 
prefrontal cortex that are known to 
project to these subcortical structures 

Fig. 4. Labeled neurons in 
the GPi. (Top) Coronal sec- 
tions at three representative 
levels through the GPi (see 
the legend in Fig. 2 for con- 
ventions). The arrow indi- 
cates the location of the la- 
beled neuron shown in Fig. 
3B. (Bottom) Plot of the ros- 
tro-caudal distribution of la- 
beled cells in the GPi. E, ex- 
ternal segment of the globus 
pallidus; o, outer portion of 
the GPi; i ,  inner portion of 
the GPi. 

(22). This creates the potential for closed 
loops between the prefrontal cortex and 
both the basal ganglia and cerebellum. 
These loops would operate in parallel with 
those serving motor areas of the cerebral 
cortex but would have a "cognitive" rath- 
er than a "motor" function. 

Considerable evidence indicates that 
the basal ganglia participate in aspects of 
cognitive function. Individuals affected by 
Parkinson's disease and Huntington's dis- 
ease, two well-known basal ganglia disor- 
ders, show cognitive deficits as well as mo- 
tor symptoms (23). Patients with focal le- 
sions of the GPi have deficits on tests of 
working memory and rule-based learning 
(for example, Wisconsin Card Sorting Test) 
(24). These deficits are considered indices 
of frontal lobe dysfunction. 

The concept that the cerebellum is in- 
volved in cognitive function is a relatively 
recent one which has lacked extensive ex- 
perimental support (2,3). There are a num- 
ber of reports that patients with cerebellar 
pathology have some cognitive deficits 
(25). In addition, a positron emission to- 
mography (PET) study found that an infe- 
rior and lateral part of the right cerebellar 
hemisphere was activated during a task that 
required rule-based generation of words (26, 
27). This activation was spatially separate 
from that found during motor tasks, includ- 
ing speech (26). Finally, support for the 
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involvement of cerebellar output in cogni- 
tive function has come from a study of 
functional activation in the human dentate 
nucleus with magnetic resonance imaging 
(28). In this study the dentate displayed a 
large bilateral activation when subjects at- 
tempted to  solve a pegboard puzzle. The  
extent of this activation was three to four 
times greater than that seen during visually 
guided movements of the pegs. 

In conclusion, our results demonstrate 
that  cerebellar and basal ganglia outputs 
gain access to  the prefrontal cortex. These 
connections provide part of the anatomi- 
cal substrate for the involvement of these 
subcortical nuclei in cognitive processing. 
Thus, we believe that  the cerebellum and 
basal ganglia should no  longer be consid- 
ered as purely motor structures. Instead, 
concewts about their function should be 
broadened to include involvement in cog- 
nitive processes such as working memory, 
rule-based learning, and planning future 
behavior. 
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