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The low-temperature relaxation dynamics of supercooled liquids are a long-standing 
theoretical problem of considerable interest. The vast amount. of experimental data on 
such liquids indicates that viscosity and diffusion in supercooled liquids are non-Arrhenius 
over a wide range of temperatures. The non-Arrhenius temperature dependence of the 
relaxation time of the slow modes in glass-forming liquids is investigated in connection 
with the topology of the potential energy landscape in configuration space. An analogy 
is made between the derived dynamical equations and Cooper's formulation of the pair 
equation in superconductivity. 

Although our understanding of the dynam- 
ics and equilibrium properties of liquids has 
increased dramaticallv over the wast two 
decades, the low-temperature relaxation dy- 
namics of glass-forming liquids are a funda- 
mental and major unsolved problem. Liq- 
uids can be supercooled under appropriate 
conditions of vressure and temverature. A 
supercooled liquid is dynamically metasta- 
ble because a small verturbation mav result 
in a transition to the crystalline state. A 
vast amount of experimental data indicates 
that supercooled states are characterized by 
universal features (1-5): (i) The viscosity of 
glass-forming liquids as a function of tem- 
perature shows deviations from Arrhenius 
behavior and is described (3, 4)  by the 
Vogel-Tammann-Fulcher or the Williams- 
Landel-Ferry laws (Fig. 1). (ii) The frequen- 
cv dewendence of shear viscositv and dielec- , & 

tric relaxation are well accounted for by the 
Barlow-Erginsav-Lamb or the Cole-Cole re- 
lations (1 , 2). (iii) The observed secondary 
relaxation (5) is an intrinsic property of the 
metastable eauilibrium liauid above the 
glass transition temperature T, (6) and is a 
result of localized molecular motions. 

The dynamics of liquids have been stud- 
ied by various researchers by the inherent 
structure approach to condensed phases (2, 
7-12). In this approach, one separates the 
mechanically stable packing configurations, 
which correspond to the local minima in 
the potential energy surface, from anhar- 
monic vibrations about these molecular 
packings. The inherent structure approach 
provides a tool for investigating the slow - - 
and the fast relaxation modes observed in 
glass-forming liquids (Fig. 2). In this report, 
we synthesize the inherent structure ap- 
proach with nonequilibrium statistical me- 
chanical techniques 'to investigate how the 
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relaxation time for the slow confieurational 
c, 

modes is connected with the topology of 
the potential energy landscape in configu- 
ration space. In fact, Frauenfelder et al. (1 3)  
have studied how these complex landscapes 
of glasses and spin glasses are related to 
dynamical motion in proteins. 

We consider a classical system of N par- 
ticles interacting with a potential @(r) ,  The 
coordinates of all the particles are denoted 
by r. The configuration space r of a super- 
cooled liquid excludes crystalline packings. 
The various minima in @(r)  and its distri- . , 
bution, in glass-forming liquids, can be 
identified at least in principle (Fig. 2) by 

Fig. 1. A sketch of the temperature dependence 
of the relaxation time r(T) [related to viscosity in 
poise (1 P = 1 dyne. s cm-')I for strong and 
fragile glass-forming liquids (4). For fragile liquids, 
T(T) is described by the Vogel-Tammann-Fulcher 
relation-namely, T(T) = A exp D,/(T - To)-over 
twelve orders of magnitude in variations in the 
relaxation time,.provided To is close to the Kauz- 
mann temperature T,; A and Do are empirical pa- 
rameters. (Inset) A sketch of the temperature de- 
pendence of dielectric relaxation,rates (F,) of main 
(a) and secondary (p) relaxations (4,5). At T, .= 1.3 
T,, the a and p relaxations bifurcate (4, 5). 

suitable projections (2, 12). We character- 
ize the votential surface bv a collection of 
intensive order parameters {t,} ( 12). In the 
thermodynamic limit, the density of mini- 
ma in the order-parameter space is propor- 
tional to exp[u(<,)N], where u(<,) is pro- 
portional to the configurational entropy per 
particle (1 2). The basins of these minima 
define a set of disjoint cells that span the 
configuration space (2, 14). The cells are 
described by a characteristic function 
C,(T), whose value is unity if the position 
in configuration space, r, is in cell a and 
zero otherwise (2, 14). 

The time dependence of the probability 
of a state woint to be in a cell a at time t. 
P,(t), in configuration space is obtained by 
the use of projection operator techniques (2, 
14). If we assume that the memory of the 
initial cell is lost, then the time dependence 
of the residence probabilities in a cell a is 
governed by a master equation, in which the 
transition wrobabilities satisfv detailed bal- 
ance (1 4, 15). At  low temperatures, there is 
a large number of independent but localized 
rearranging regions in the sample, and rear- 
rangements in each region involve only a 
small (of order unity) subset of particles (2, 
8 ,  1 1, 12). Consequently, a van Kampen 
system size expansion (1 2, 15) leads, in the 
continuum limit, to a Fokker-Planck equa- 
tion in the order-parameter space (1 6). 

where the diffusion coefficient D (tensor) 
in the order parameter space is related to 
the mobility <(E, E) by means of D(E, E) = 
kBT 1;(E, E), where P = l/kBT and kB is the 
Boltzmann constant. Note that the thermo- 
dynamic force F 

appearing in Eq. l a  is the result of entropic 
"barriers" (2, 12, 17). The configurational 
entropy at energy E is denoted by S(E,, E) 
and is related to o(e,) (2, 12). 

Classical nucleation theory (1) predicts 
that if thermal fluctuations were such that 
the drowlet size or the size of a coowerative 
rearranging region (1 8 )  is larger than a crit- 
ical value, then the system lowers its free 
energy by crystallization. In this sense, the 
subset of order parameters Ef. = ef(E), for 
which the free energy F( t )  is an extremum, 
describes a critical droplet. The surface 
where VS(E, E) vanishes defines a constraint 

= e(E) .  Our viewpoint is that the non- 
Arrhenius rate processes observed in glass- 
forming liauids arise from the relaxation to- 

L, L 

ward equilibrium of the slow mode on 5" = 
<*(E), which is the intersection of Ef with 5". 
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Fig. 2. A sketch of the potential energy landscape of (A) fragile and (B) strong glass-forming liquids viewed 
along a one-dimensional reaction coordinate (4). The potential energy landscape for fragile liquids has a 
large number of local minima of various depths. The situation is similar to proteins and spin glass (13). (C) 
The entropy of a supercooled liquid as a function of temperature. The dashed and the dotted lines represent 
an extrapolation of the entropy of strong and fragile liquids, respectively. At T,, the entropy of a supercooled 
liquid is equal to the entropy of the corresponding crystalline phase. AS, is the entropy of fusion. 

Crystal I 

It is fruitful to introduce the curvature 
(Fig. 3 )  of the entropic barriers K.;, ,~(<,  E)  
defined as {dZ[S(<, E)/kB]/d<,,d<,). O n  ex- 
panding P(<, E; t )  as C,, a,, +,,(<, E) 
exp( - o,,t), one obtains from Eq. 1 

T 

Here, d is the dimension of the order pa- 
rameter space of volume VE, and @,(k, E) 
and T,,,,(k, E)  are the Fourier transforms of 
*,(5, E)  and K,,,~(<, E), respectively. In 
deriving Eq. 2, we have assumed that the 
curvature of the entropic barrier is parallel 
to the diffusion tensor, the latter being re- 
placed by its average value D*(E) on E*(E), 
and T,,,,(k - k', E)  is approximated (1 9 )  by 
T,,,,(k*; E), where k*-<* = ( 2 7 ~ ) ~ .  

Observe that Eq. 2 is identical in form to 
the Cooper pair equation in superconduc- 
tivity (20). The diffusion coefficient D*(E) 
plays the same role as the inverse reduced 
mass of a pair of electrons. The parameters 
@,(k, E)  and TS,,,(k*; ,E) are analogous to 
the wave function and an attractive inter- 
action between the Cooper pair in momen- 
tum representation, respectively. 

The integral equation can be explicitly 
solved along the lines pioneered by 'Cooper 
(20). Let us denote the right side of Eq. 2 by 
A(E). Then, @,(k, E) is given by 1/[D*(E) 
C,k: - w,] A(E). Substituting this expres- 
sion for @,(k, E) back in the right side of Eq. 
2 leads to 

Reaction coordinate 

Experiments indicate that at least two order 
parameters are required to describe the su- 
percooled and glassy states (21 ). In this case 
(22), the integrals can be evaluated. The 

temperature dependence of the relaxation 
time of the slow mode, T,(T), is non-Arrhe- 
nius 

and governed primarily by the configura- 
tional entropy of the supercooled liquid. 
Both T, and B are functions of the order 
parameters and are temperature dependent 
(23). If S(k*, E)  is approximated (24) as the 
product S(E)f(k*), then T,(T) is of the form 
suggested by Adam and Gibbs (18). 

In glass-forming liquids, the configura- 
tion heat capacity change at constant pres- 
sure, ACp, is well approximated by A,/T, 
where A, is a constant (2, 4, 25). This then 
leads to the identitv of the Kauzmann tem- 
perature Tk and the temperature To at which 
the configura;ional entropy vanishes (2, 4, 
24). Thus, T,(T) is nonanalytic as T + Tk 
(Fig. I),  as suggested by the Vogel-Tam- 
mann-Fulcher relation (1-4). This is rem- 
inscent of the nonanalytic dependence of 
the binding energy A of a Cooper pair on the 
strength of the attractive interaction x (20) 

where P ( E ~ )  is the density of states of the 
electrons at the Fermi energy E,, and OD is 
the Debye temperature (26). In both cases, 
nonanalyticity cannot be obtained by per- 
turbation calculation. 

Our results are in accord with experi- 
ments which show that the temDerature de- 
pendence of configurational slow modes, 
which decouwle from the viscous modes. is 
non-Arrhenius (4). Thus, our approximation 
with finitely many order parameters may be 
justified (22). Examples of order parameters 
include volume per particle, distribution of 
coordination numbers, and depth of minima 
per particle (12). A complete set of order 
parameters is required to describe all relax- 
ation modes that are measurable. Thus, the 
choice of order parameters is governed by 
the nature of the physical application in 
relation to measurable quantities in an ex- 

Fig. 3. A two-dimensional view of an entropic 
channel along appropriate reaction coordinates. 
The channels do not have potential barriers. The 
time to traverse from A to B by means of Brownian 
motion depends on the topology of the bulges as 
well as on the constrictions. 

periment. A quantity such as the vibrational 
partition function is not sensitive to order- 
parameter variations (1 2). This is so because 
for T < T the vibrational heat capacity of 
glasses and?he corresponding crystalline sol- 
id are similar (27). . , 

The number of unstable modes fU is an 
indicator of the fluidity of the system (28, 
29). It indicates the number of directions 
away from a barrier region. One therefore 
anticipates a connection between the self- 
diffusion coefficient and f, (28, 29): The 
quantity f, determines the time spent on the 
peaks (29). The ratio of the time spent in a 
valley, T,, to the time spent in crossing a 
barrier, T ~ ,  is therefore proportional to 
(1  - f,)/f, and hence to the self-diffusion 
coefficient D (2, 11, 29). The formalism . .  . . 
developed here allows us to calculate the 
diffusion coefficient and a crossover temwer- 
ature-in terms of stable and unstable modes 
(30). The formulation may elucidate (30) 
the bifurcation and the temperature depen- 
dence of the "slow" p relaxations (5) and 
whv the ultrafast orientational dvnamics of 
side groups in a variety of systems are inde- 
pendent of temperature over a wide range of 
TIT, where q is the shear viscosity (31 ). 
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Surface-Skimming Stoneflies: A Possible 
Intermediate Stage in Insect Flight Evolution 

James H. Marden* and Melissa G. Kramer 

lnsect wings appear to have evolved from gills used by aquatic forms for ventilation and 
swimming, yet the nature of intermediate stages remains a mystery. Here a form of 
nonflying aerodynamic locomotion used by aquatic insects is described, called surface 
skimming, in which thrust is provided by wing flapping while continuous contact with the 
water removes the need for total aerodynamic weight support. Stoneflies surface skim 
with wing areas and muscle power output severely reduced, which indicates that surface 
skimming could have been an effective form of locomotion for ancestral aquatic insects 
with small protowings and low muscle power output. 

Insects evolved the ability to fly approxi- 
mately 330 to 400 million years ago, and 
they subsequently radiated and diversified to 
become the most speciose life form on the 
planet (1 ). How flight evolved in insects has 
been a topic of frequent debate (2), because 
the answer mav vield valuable insight into , , - 
reasons for insect diversification. Further- 
more, flight exemplifies one of the great 
challenges for evolutionary biology, which is 
to determine transitions in function and se- 
lective advantage for intermediate stages 
during evolution of complex suites of inter- 
dependent anatomical, physiological, and 
behavioral features (3). 

Fossils offer tantalizing clues regarding 
morphology and skeletal anatomy of certain 
primitive 'insect fliers (4); however, the fos- 
sil record is too sparse to resolve key phy- 
logenetic or functional transitions. Recent 
debate has focused predominantly on the 
anatomical origin of wings (immovable tho- 
racic lobes or articulated gills) and whether 
small protowings served originally for adap- 
tive aerodynamic functions (5) or were used 
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for thermoregulation and only subsequently 
became adapted for flight ( 6 ) .  Presently, the 
fossil, neurological, and developmental ev- 
idence (4, 7) favors the wings-from-gills 
model (2); however, no previous hypothe- 
ses have offered a detailed model ex~laining u 

how fliers could have evolved from swim- 
mers, nor have they utilized detailed exam- 
inations of behavior, physiology, and mor- 
phology of the extant insect orders (Ephem- 
eroptera and Plecoptera) that are anatomi- 
cally and phylogenetically closest to pre- 
flight fossil insects. - 

Surface skimming, a wing-flapping mode 
of locomotion used by certain adult stone- 
flies (Plecovtera) and subadult mavflies 
(Ephemeroptera), is an attractive candidate 
for an intermediate stage between swimmine " u 

and flying. Surface skimming consists of pla- 
nar movement across a water surface, where- 
in propulsion is supplied by aerodynamic 
thrust, while continuous contact with the 
water removes the need for total aerodynam- 
ic weight support (Fig. 1). Thus, all compo- 
nents of the flight motor (wings, wing artic- 
ulations, muscles, and neuromotor vatterns) 
of primitive surface skimmers coild have 
simultaneously undergone selection for in- 
cremental improvement in flapping aerody- 

namic performance. Here we present an ex- 
perimental test of the hypothesis that incre- 
mental increases in wing size, flight muscu- 
lature, and muscle power output bring about 
incremental imwrovement in the surface- 
skimming performance of a stonefly. 

Stoneflies are weak-flying or nonflying 
aquatic insects that, except for wings, show 
relatively little morphological divergence 
from fossil ancestors dating back to the Car- 
boniferous (Fig. 2) (8). Taeniopteryx burksi 
(Pleco~tera: Taenio~terygidae) is a winter- 
emerging stonefly that is common across 
eastern and central North America, whose 
only conspicuous use of wing flapping in the 
field is for surface skimming (Fig. 1). In 
central Pennsylvania during February and 
March, T. burksi adults emerge and use sur- 
face skimming to cross oven water whenever - 
they emerge at a distance from shore (on 
emergent mid-stream rocks. sticks. or ice). u 

After exiting the stream, adults fekd terres- 
trially and arboreally on algae, and they mate 
(9). We have observed thousands of individ- 
uals in the field (ambient temperature 0" to 
12°C) but have never seen one flv. 

We videotaped surface-skimming loco- 
motion of normal and wing-clipped individ- 
uals in the lab to determine how skimming 
velocity is affected by relative wing size, 
flight muscle ratio (the ratio of thoracic mus- 
cle mass to total body mass, a strong deter- 
minant of performance in flying insects) 
( 1 0) , temperature (which affects muscle 
power output in ectotherms) (1 1 ), and body 
size ( 12). Skimming velocitv increased in a . . - 
continuous, incremental fashion with in- 
creasing temperature, relative wing area, 
and flight muscle ratio (Table 1 and Fig. 
3) ,  reaching speeds as high as 44 cm/s. 
Surface skimming was effective even at 
temperatures as low as l.S°C (Fig. 3) ,  
when muscle vower outwut of ectothermic 
insects is severely restricted (1 1, IS), and 
with wing size reduced to as little as 20 
to 30% of normal (Figs. 1C and 4). 

Unlike their behavior at cold ambient 
temperatures in the field, most T. burksi 
adults do attempt to fly in the lab (air tem- 
perature = 22°C). We classified perfor- 
mance of 31 flight-willing individuals as ei- 
ther (i) able to gain altitude in a sustainable 
fashion, (ii) able to sustain only level 
flight, or (iii) unable to sustain level flight 
while flapping. Only 6 individuals (19%) 
gained altitude, 9 (29%) sustained level 
flight, and 16 (52%) consistently lost al- 
titude. These performance groups differed 
in mean flight muscle ratio but not in 
wing loading (Table 2). 

In contrast to these results for morpho- 
logical determinants of flight performance, 
our surface-skimming experiments showed 
that performance increased steadily. with in- 
creasing wing area, up to the highest relative 
wing areas observed (Fig. 3 ) .  Similarly, flight 
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