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TLCI: Template RNA 
Component of Saccharomyces 

cerevisiae Telomerase 
Miriam S. Singer and Daniel E. Gottschling 

Telomeres, the natural ends of linear eukaryotic chromosomes, are essential for chro- 
mosome stability. Because of the nature of DNA replication, telomeres require a spe- 
cialized mechanism to ensure their complete duplication. Telomeres are also capable of 
silencing the transcription of genes that are located near them. In order to identify genes 
in the budding yeast Saccharomyces cerevisiae that are important for telomere function, 
a screen was conducted for genes that, when expressed in high amounts, would suppress 
telomeric silencing. This screen lead to the identification of the gene TLCl (telomerase 
component 1). TLCl encodes the template RNA of telomerase, a ribonucleoprotein 
required for telomere replication in a variety of organisms. The discovery of TLCl confirms 
the existence of telomerase in S. cerevisiae and may facilitate both the analysis of this 
enzyme and an understanding of telomere structure and function. 

Telomeres are specialized nucleoprotein 
complexes that constitute the ends of eu- 
karyotic chromosomes and protect chromo- 
somes from degradation and end-to-end fu- 
sion (1,  2). When telomeres are absent, the 
instability of nontelomeric chromosomal 

The authors are in the Department of Molecular Genetics 
and Cell Biology, The University of Chicago, Chicago, IL 
60637. USA. 

ends leads to chromosome loss (3). In ad- 
dition, telomeres are required for the com- 
plete replication of chromosomes (1 , 2 ,  4). 

DNA polymerases synthesize DNA in a 
5' to 3' direction and require a primer to 
initiate synthesis. These restrictions pose a 
problem for the complete replication of lin- 
ear chromosomes (5). In the absence of a 
specialized mechanism to maintain termi- 
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nal sequences, multiple replication cycles 
would cause chromosomes to shorten Dro- 
gressively from their ends. In many eu- 
karyotes, telomeres are composed of simple 
tandem repeats, with the 3'-terminal strand 
composed of G-rich sequences (1, 2). In- 
sight into the mechanism by which telo- 
meric DNA is maintained has come from 
the identification of telomerase activity in 
several species of ciliates, as well as in ex- 
tracts of Xenobus. mouse. and human cells s ,  

(6). Telomerase is a ribonucleoprotein en- 
zyme that elongates the G-rich strand of 
chromosomal termini by adding telomeric 
repeats (4). This elongation occurs by re- 
verse transcription of a part of the telomer- 
ase RNA component, which contains a se- 
quence complementary to the telomere re- 
peat. After the telomerase-catalyzed exten- 
sion of the G-rich strand, the comple- 
mentary DNA (cDNA) strand of the telo- 
mere is presumably replicated by more con- 
ventional means. 

Telomerase is now the focus of increas- 
ing interest, because of reports linking it to 
cellular senescence and oncogenesis (7). 
Germline cells, whose chromosomal ends 
must be maintained through repeated 
rounds of DNA replication, do not decrease 
their telomere length with time, presumably 
as a result of the activitv of telomerase (8). , , 

In contrast, somatic cells appear to lack 
telomerase, and their telomeres shorten 
with multiple cell divisions (8-10). The 
repression of telomerase activity in somatic 
cells may have a critical role in the control 
of the number of times that they divide. 
Indeed, the length of telomeres in primary 
fibroblasts correlates well with the number 
of divisions these cells can undergo before 
they senesce (8). The loss of Lelomeric 
DNA may signal to the cell the end of its 
replicative potential, as part of an overall 
mechanism by which multicellular organ- 
isms limit the proliferation of their cells. 
Conversely, late stage tumors probably re- 
auire the reactivation of telomerase in order 
to avoid total loss of their telomeres and 
massive destabilization of their chromo- 
somes. Immortalized cell lines produced 
from virally transformed cultures have ac- 
tive telomerase and stable telomere lengths 
(10). Recently, telomerase activity has also 
been detected in human ovarian carcinoma 
cells ( 1 I ). 

The evolutionarv conservation of telo- 
mere structure sug~ests that the study of 
telomerase in genetically tractable organ- 
isms, such as the budding yeast Saccharmy- 
ces cerevisiae, may yield general insight. Al- 
though no telomerase activity has yet been 
identified in yeast extracts, results from a 
recent genetic study suggested the existence 
of an S. cerevisiae telomerase (12). In that 
work. double-strand breaks were introduced 
into yeast chromosomes in vivo. The healed 

chromosomes, to which the cell had added 
new telomeric tracts, were then analyzed. A 
specific 13-base pair (bp) motif (GTGT- 
GTGGGTGTG) or an 11-bp subset of this 
sequence were frequently found at the junc- 
tion between the break site and the new 
telomeric tracts, which suggests that this 
sequence is added de novo. It was predicted 
that the RNA template component of the 
putative yeast telomerase would contain the 
sequence complementary to this motif. 

In spite of evidence suggesting an overall 
mechanism for telomeric replication in S .  
cerevisiae, little is known about the molec- 
ular machinery of this process. Until now, 
the only candidate for a component of the 
telomere replication apparatus has been the 
protein encoded by the EST1 gene (13). Its 
role in telomere replication is suggested by 
the finding that estl cells display progres- 
sive telomere shortening, which is accom- 
panied by a gradual loss of chromosome 
stability and cell viability. The direct func- 

. - 
URA3-TEL(VI1-L) h n :  URA3 

Strains 

tion of Estlp is not yet known. 
A screen for suppressors of telomeric 

silencing. Genes located near S. cerevisiae 
telomeres are subject to transcriptional si- 
lencing by a repressive chromatin structure 
that initiates at the telomeres (14-16). We 
~ r o ~ o s e d  that the telomeric structure re- . L 

sponsible for silencing might be a multi- 
meric complex that would be sensitive to 
the stoichiometric imbalance of its compo- 
nents. Therefore, in order to identify genes 
involved in telomere structure or function, 
we carried out a screen for gene products 
that, when expressed at high amounts, 
would suppress telomeric silencing. A yeast 
strain was constructed with genetic markers 
located at two telomeric loci. The ADE2 
gene, which is required for adenine biosyn- 
thesis, was placed adjacent to the telomere 
at the right arm of chromosome V (V-R), 
and URA3, a gene required for uracil bio- 
synthesis, was located adjacent to the telo- 
mere at the left arm of chromosome VII 

Fig. 2. Overexpression of TLCl causes a decrease in telomeric tract 
length. Yeast strain UCC3505 carrying either vector @TRP, lanes 1 and 
2) or a 7ZCl cDNA clone (pTRP6, lanes 3 and 4) were pregrown for 
approximately 60 generations on medium containing 3 percent galac- 
tose without tryptophan. Genomic DNA was prepared from two inde- 
pendent transformants of each strain, digested with Apa I and Xho I ,  
separated by electrophoresis on a 1 percent agarose gel, and blotted 
onto a nylon membrane. The membrane was probed with a 1.1 -kb Hind 
IllSma I UR43 fragment. The UR43 gene in this strain is located 
adjacent to telomere VII-L. The higher molecular weight (nontelomeric) 
UR43 fragments represent sequences of the telomeric UR43 that are 
centromere-proximal to the UR43 Apa I site, and sequences from the 
ura3-52 allele at the normal chromosomal locus of URA3 (42). The 
telomeric fragment is indicated by the arrow. 

SCIENCE VOL. 266 21 OCTOBER 1994 



(VII-L) (1 7). Normally, colonies expressing 
ADE2 are white, whereas those not express- 
ing it (ade2) are red (18). As a result of the 
semistable nature of telomeric silencing of 
most genes, switching between silenced and 
transcriptionally active states may occur ev- 
ery few generations and thus give rise to 
different phenotypic populations. In the 
case of strains with ADE2 located near a 
telomere, these different populations are 
seen as red and white sectors within a single 
colony (14). A URA3 gene located at telo- 
mere VII-L also normally switches between 
transcriptional states (14). However, we 
caused the telomeric URA3 to be com~lete- 
ly silenced by deleting its trans-activator, 
PPRl (1 9). The cells were therefore unable . , 

to grow in the absence of uracil. 

To identify genes or gene fragments 
whose overexpression could disrupt silenc- 
ing, the strain was transformed with a high- 
expression S. cerevisiae cDNA library (20). 
Because the nature of its synthesis, a cDNA 
library typically contains both full-length 
and truncated versions of RNA transcripts. 
Thus high-level expression from a cDNA 
library has two means of causing a stoichio- 
memc imbalance: by expression of a normal 
gene product or a defective one (21 ). In the 
library used in our study, the expression of 
cDNA inserts was controlled by the GAL1 
promoter, which is strongly induced by the 
presence of galactose in the medium (22). 
Of the 330,000 yeast transformants we ob- 
tained, 48 displayed a galactosedependent 
decrease in telomeric silencing. That is, 

Fig. 3. n C l  encodes a 1.3-kb RNA. nC1 tran- 1 2 3  4  1 2 3  
script levels were analyzed in yeast strains con- 
taining a wild-type nC1 gene (lane I), or a tlcl:: 
LEU2 disruption allele (lane 2), and in wild-type 
cells canying either vector (pTRP, lane 3) or a -3.4 kb 
nCl  cDNA clone (pTRP61, lane 4). Total RNA -1.8 kb 
was isolated from mid-log phase cells grown in kb 

rich medium (for strains lacking plasmids) or in 
synthetic medium without tryptophan but with 3 
percent galactose (for the plasmid-containing 
strains). RNA (20 ua) from each strain was elec- . * -, 
trophdretically separated on a 0.9 percent agarose formaldehyde gel, transferred to a nylon membrane, 
  robed with a 1.25-kb nC1 antisense   robe (made from the DTRRI insert). and exmsed to film (left). 
bhosphorimaging analysis determined'that there is approxi~ately 12 tim& more ' n ~ 1  RNA in the 
overexpressing strain (lane 4) than in the vector-containing wild-type strain grown under the same 
conditions (lane 3). The right panel displays the ethidium bromidestained gel prior to blotting, with the 
sizes of the rRNA species (25s and 18s) indicated on the right. The wild-type and tlcl strains shown in 
lanes 1 and 2 were derived from sporulation of UCC3508 (31). The yeast strain transformed with the pTRP 
and pTRP61 plasmids, shown in lanes 3 and 4, is UCC3505. 

&, 

1 2 3 4 5 6  1 2 3 4 5 6  
-0.51 

Day: 
1 2 3 4 5  1 2  3 4 5  

TLC1+ tlcl- TLCl+ tlcl- 

Fig. 4. Disruption of nC1 causes progressive telomere shortening and a gradual decrease in growth rate 
and viability. (A) A nCl/tlcl::LEU2 diploid (UCC3508) was sporulated and the resulting tetrads were 
dissected &d germinated on rich mdium. Colonies representing the four spore products kom a tetrad 
were inoculated into 5.5 ml of rich medium and grown at 30°C. Every 24 hours, 5 ml of the culture were 
used for the preparation of genomic DNA, and 5 pI were used to inoculate 5.5 ml of fresh medium. The 
genomic DNA was digested with Apa I ,  electrophoresed on a 1 percent agarose gel, transferred to a nylon 
membrane and hybridzed to a 1 .l -kb URA3 probe. The URA3 gene is located adjacent to telomere VII-L 
in these strains (43). The telomeric fragment is indicated with an arrow. (B) In an experiment similar to that 
described above, UCC3508 spore products were grown continuously in rich medium. Every 24 hours, 
the cell density was determined and each culture was diluted to 3 x 1 O5 cells per milliliter in 5.5 ml of fresh 
medium for further growth. The cell density at each time point is plotted for the two nC1 (white circle and 
square) and tlcl (black circle'and square) spore products of a tetrad. 

when grown on media containing galactose, 
the cells were able to grow in the absence of 
uracil (Ura+) and gave rise to predominant- 
ly white colonies (Ade+). On the basis of 
restriction mapping, DNA blotting (South- 
em) analysis, and DNA sequencing, we de- 
termined that these 48 clones represented 
ten independent genes (23). 

Isolation of TLC1, a telomere-specific 
suppressor of silencing. The genes known 
to be required for telomeric silencing are 
also involved in transcriptional silencing at 
two internal chromosomal sites, the HML 
and HMR loci, which harbor the unex- 
pressed copies of the mating type genes in 
S. cerevisiue (24). To determine whether the 
newly isolated suppressors of telomeric si- 
lencing also affect silencing at HML, the 
expression plasmids were introduced into a 
strain in which the URA3 gene was inserted 
into the HML locus (25). Overexpression of 
one of the genes identified, TLCl, had no 
effect on silencing at HML, but strongly 
suppressed telomeric silencing of URA3 and 
ADE2 (Fig. 1). The SIR4 gene, whose over- 
expression disrupts silencing both at telo- 
meres and at HML (26), was also isolated in 
our screen and derepressed both of these 
loci in our assay (Fig. 1). 

Further evidence for the specific associ- 
ation of TLCl with telomere structure 
came from an examination of telomere 
length in strains overexpressing a TLCl 
cDNA clone. In the absence of the TLCl 
overexpression plasmid, the telomeric se- 
quences at VII-L averaged 330 bp in length. 
When TLCl was overexpressed, the aver- 
age telomere length at VII-L decreased be- 
tween 90 and 220 bp (Fig. 2). The alter- 
ation of telomere length on overexpression 
of TLCI, together with the loss of telomeric 
silencing, suggested that this gene is specif- 
ically involved in telomere structure. 

Of the 48 cDNA clones isolated in our 
screen as suppressors of telomeric silencing, 
nine represented TLCI. Physical mapping 
localized TLCl to a single site on chromo- 
some 11, immediately adjacent to CSG2 
(27, 28). We sequenced one of the TLCl 
cDNA clones in its entirety (pTRP61,1248 
bp), as well as the ends of the other eight 
TLCl clones. These sequence data over- 
lapped to yield a contiguous sequence of 
1301 bp, although no single clone included 
the entire sequence (29). After this work 
was completed, the sequence of chromo- 
some I1 was entered into the EMBL data- 
base (30). These data match the sequence 
that we had obtained from the cDNAs. 
RNA blot (Northern) analysis confirmed 
that a wild-type strain contained a relative- 
ly abundant RNA that hybridized to a 
TLCl probe and was approximately 1.3 kb 
in length (Fig. 3). 

Encoding of the S. cerevisiue telomer- 
ase RNA by TLC1. The TLCl sequence 
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has two notable features. The gene does not 
seem to encode a protein because it does 
not contain a large open reading frame 
(ORF). The longest ORF that begins with 
an ATG codon is only 43 amino acids in 
length. This finding suggested that the 
functional TLCl gene product might be the 
RNA itself. Moreover, TLCl contains the 
sequence CACCACACCCACACAC, 
which includes the motif predicted to tem- 
plate S. cerevisiue telomeres (12). These 
results suggested that TLCl encodes the 
putative yeast telomerase RNA. 

If the TLCl gene product is indeed the 
telomerase RNA, then disruption of TLCl 
would be predicted to cause incomplete rep- 
lication of telomeres, which would result in 
progressive telomere shortening with each 
cell division. A TLCl disruption was treat- 
ed in which a large part of TLCl, including 
the predicted telomere-templating region, 
was removed and replaced with a marker 
gene (31 ). This disruption was introduced 
into a wild-type diploid strain to create a 
TLClltlcl heterozygote, which was then 
sporulated, giving rise to two mutant and 
two wild-type haploid strains. Northern 
analysis confirmed that in the TLC1-dis- 
rupted spore products, there was no detect- 
able TLCl RNA (Fig. 3). The spore colo- 
nies were inoculated into rich medium and 
grown for several days by diluting the cul- 
tures into fresh medium every 24 hours. In 
all cases examined (eight tetrads), TLCl 
strains maintained a normal telomere 
length after 6 days of growth. In contrast, 
the tlcl strains displayed shortened telo- 
meres. In the cases in which DNA samples 
were collected daily (three tetrads), the 
tlcl telomeres shortened progressively, at 
an approximate rate of 3 bp per generation 
(Fig. 4A). 

In conjunction with the shortening telo- 
mere phenotype, older tlcl cultures dis- 
played a gradual increase in generation 
time. Through the first 40 generations after 
sporulation of a TLClltlcl strain, all four 
spore products were able to regrow approx- 
imately one thousand-fold in rich medium 
within 24 hours, an indication that the 
generation time was less than 2.4 hours 
(Fig. 4B). This growth rate was maintained 
in TLCl strains for up to 80 generations. In 
the tlcl strains, however, by 65 generations 
after germination the growth rate had 
slowed to about 3.3 hours per generation. 
After 75 generations, the doubling time of 
the tlcl cultures was 5.7 hours. This de- 
crease in growth rate was accompanied by a 
50 percent drop in viability in the tlcl 
strains after 75 generations (23). This gen- 
eral pattern was clear in all 14 tetrads ex- 
amined although there was some variation 
in the period at which the decrease in 
growth rate occurred. However, as was re- 
ported for estl strains (32), the dying tlcl 

cultures were overtaken within approxi- 
mately 100 generations by faster-growing 
cells, which presumably contained suppres- 
sor mutations (23). 

To determine whether the TLCl gene u 

product is the S. cerevisiae telomerase tem- 
  late RNA. it was necessarv to confirm that 
TLCl sequences encode telomeric tract re- 
peats. Earlier experiments with Tecrahymena 
hermophila showed that when a mutated 
telomerase RNA is introduced into a cell, 
the altered sequence may be used as a tem- 
plate and incorporated into the telomeres of 
the cell (33). A candidate motif for the 
telomere template within TLCl was the 
sequence CACCACACCCACACAC 

Fig. 5. The n C l  gene is 
proposed to encode an 
RNA that functions as a 
ternplating component of te- 
lomerase, an enzyme that 
elongates the G-rich strand 
of S. cerevisiae telomeres 
(A). By this model, the nC7 
RNA anneals to the single- 
stranded G-rich overhang- 
ing strand at the end of the 
chromosome and templates 
its elongation by means of a 
reverse transcription reac- 
tion. The bold-type DNA 
bases represent newly syn- 
thesized sequence. (6) In 
accordance with this hy- 
pothesis, it is predicted that 
mutating the putative tern- 
plate motif of TLC7, creating 
the nC1-7(Hae 111) allele, 
should result in the incorpo- 
ration of the altered se- 
quence into telomeric DNA. 

(Fig. 5A). We constructed a TLCl allele, 
designated TLCl -1 (Hue Ill), in which two 
base pairs of this motif were changed to 
create a recognition site for the restriction 
enzyme Hae 111 (Fig. 5B). This mutant al- 
lele was used to replace one of the normal 
TLCl genes in a diploid strain (34). 

In addition to functioning at the very 
ends of normal telomeres, telomerase is also 
believed to participate in the healing of 
broken chromosomes and in the extension 
of unusually short telomeric tracts (1 2). In 
this latter capacity, the activity of a mutant 
telomerase would be most easilv detected. 
Therefore, fragment-mediated transforma- 
tion was used to remove the sequence distal 
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Fig. 6. Altering the putative telomere-templating region of TLC7 results in the incorporation of the mutant 
sequence into telomeric tracts. (A) Fragment-mediated transformation of TLClmC7 and TLC7-7(Hae 
III)/TLC7 diploid strains was used to replace the terminal sequences of the lefl arm of one of the 
chromosome MI homologs with a URAB gene and a short telomeric tract sequence. The most telomere- 
proximal Apa I and Hae I l l  sites in the fragment used in the transformation overlap and are located 0.75 
kb from the telomeric end of the fragment. (B) Restriction digests of genomic DNA from transformed 
strains were used to determine whether Hae I l l  sites were introduced into the new telomereVII-L upon its 
elongation in vivo. Genomic DNA from TLC7flLC7 and TLC1-7(Hae lll)mC7 yeast strains, either 
transformed with URA3TEL (telomeric URA3+) or not (telomeric URA3-), was digested with Apa I (A) or 
Hae Ill (H). The DNA fragments were separated by electrophoresis on a 1.25 percent agarose gel, 
transferred to a nylon membrane, and probed with a labeled 0.6-kb URA3 probe (Apa Wind I l l  fragment), 
as depicted in (A). Each telomeric URA3+ strain represents an independently isolated transformant. 
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to the ADH4 locus on the left arm of 
chromosome VII, and replace it with a 
URA3 gene and a short tract of telomeric 
sequence to act as a seed for in vivo telo
mere elongation (Fig- 6 A). This transfor
mation was done in both homozygous wild-
type (TLCI/TLCI) and heterozygous 
TLCl-l(Hae 111)/TLCI strains (35). South
ern analysis was performed on genomic 
DNA from the transformed strains to deter
mine the structure of the new telomeres at 
VII-L (Fig. 6B), Digestion with Apa I, 
whose most distal site in the new VII-L arm 
occurs within the URA3 gene, demonstrat
ed that, in both the wild-type (TLC1/ 
TLCI) and heterozygous TLCl-l(Hae 111)/ 
TLC1 transformants, the new chromosomal 
end was extended in vivo to several hun
dred base pairs- The new telomeres in the 
TLCl-l(Hae 111)/TLCI strains were slight
ly shorter and more heterogeneous in 
length than those added in the TLCI/ 
TLCI strains- In all 12 TLC1/TLC1 inde
pendent transformants tested, digestion 
with Hae III, which cuts at the same site in 
URA3 as Apa I, indicated that no Hae III 
sites were introduced during telomere elon
gation in vivo- In contrast, in all eight 
TLCI-1 (Hae 111)/TLCI independent strains 
examined, Hae III sites were incorporated 
into the newly formed telomere- We con
clude that the mutated sequence in the 
TLCl-l(Hae 111) gene served as a template 
for the addition of telomeric repeats, which 
indicates that the TLCI gene indeed en
codes the S. cerevisiae telomerase RNA-

Comparison of TLCI with other telo
merase RNAs- In our study we have dem
onstrated the existence of an S. cerevisiae 
telomerase and have identified the gene 
that encodes its RNA component- Our 
findings support the theory that the telo
merase mechanism of replicating the ends 
of chromosomes is widespread among eu-
karyotes- However, the TLCI RNA is 
much larger (1.3 kb) than the known ciliate 
telomerase RNAs, which are 160 to 200 
nucleotides (nt) in length (4)- This discrep
ancy in gene size is reminiscent of the 1175-
nt S- cerevisiae U2 small nuclear RNA 
(snRNA), which is almost 1 kb larger than 
the mammalian U2 snRNA (36). The con
served secondary structure that is shared 
among the ciliate telomerase RNAs is not 
apparent in the sequences surrounding the 
TLCI template region (37), although the 
large size of the transcript may allow homol
ogous structures, that are not obvious at this 
time, to form- Also, TLCI lacks a short 
primary sequence adjacent to the template 
region that is conserved among the ciliate 
telomerase RNAs (38). 

Whereas telomeric DNA in most organ
isms consists of sequences repeated in a 
regular fashion [for example, mammalian 
(T2AG3), Tetrahymena (T2G4)], the telo

meric sequence of S. cerevisiae is irregular 
[(TG)1_3TG2_3] (1)- However, this irregu
larity can be fully explained by the telo-
mere-templating sequence in TLCI- Tel
omerase RNAs are thought to synthesize 
the G-rich strand of telomeres by multiple 
rounds of hybridization to a short sequence 
at the end of a telomeric tract, elongation of 
the DNA by a limited reverse transcription 
of the RNA, and disengagement (4)- In 
vitro, the Tetrahymena telomerase RNA ap
pears to use as few as three nucleotides for 
the hybridization step (39)- The telomere 
template region of TLCI (CACCACAC-
CCACACAC) suggests that the telomer
ase RNA may be able to align with a telo
mere terminus at a number of different 
points within the RNA, especially if CAC 
is all that is required for hybridization- It is 
also possible that the telomerase could 
abort a round of reverse-transcription at 
several different positions along the RNA-
If a terminal DNA sequence such as GTG is 
left, then alignment with the CAC RNA 
motif in the next round of elongation can 
readily occur- Either alone or in combina
tion, these different alignment and termi
nation possibilities can account for the het
erogeneity! observed in the S. cerevisiae te
lomeric tracts-

A link between telomeric silencing and 
telomerase- Overexpression of the TLCI 
cDNA clones identified in our study both 
disrupts telomeric silencing and causes a 
shortening of telomeres- One model to ex
plain these results is that overexpression of 
the cDNAs causes limiting telomerase com
ponents to be titrated into incomplete and 
nonfunctional complexes, thereby reducing 
the total telomerase activity in the cell and 
resulting in shorter telomeres- The length of 
the telomere may relate to its ability to bind 
silencing proteins; shorter telomeres simply 
have fewer binding sites, and thus may si
lence telomeric genes less efficiently (40). 
Alternatively, the telomerase RNA itself, 
or one of the factors it binds, may be an 
integral component of the complex that is 
required for silencing at telomeres- Overex
pression of TLCI may perturb the stoichi-
ometry of this complex, and thus interfere 
with its assembly- Of the nine TLCI 
cDNAs isolated in our screen, none appear 
to be full length (29). Thus it is formally 
possible that only an incomplete (non
functional) TLCI RNA can produce the 
effects detected-

The telomere shortening and growth de
fects that we observed when the telomerase 
RNA was disrupted are very similar to those 
described for estl strains; this observation 
lends further support to the prediction that 
EST1 is a constituent of telomerase (13). 
Moreover, the genetic link discovered here 
between telomeric silencing and telomerase 
suggests future approaches for identifying 

other telomerase components, which so far 
have been elusive-
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