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Early Cretaceous Dinosaurs from the Sahara 
Paul C. Sereno*, Jeffrey A. Wilson, Hans C. E. Larsson, 

Didier B. Dutheil, Hans-Dieter Sues 

A major question in Mesozoic biogeography is how the land-based dinosaurian radiation 
responded to fragmentation of Pangaea. A rich fossil record has been uncovered on 
northern continents that spans the Cretaceous, when continental isolation reached its 
peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of 
dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that 
several lineages of tetanuran theropods and broad-toothed sauropods had a cosmo- 
politan distribution across Pangaea before the onset of continental fragmentation. The 
distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the 
Cretaceous by differential survival of once widespread lineages on land masses that were 
becoming increasingly isolated from one another. 

Although increased continental isolation 
has been implicated as the driving force 
behind the differentiation of Cretaceous di- 
nosaurian faunas (1 ), a coherent picture of 
dinosaurian biogeography during this period 
has not been ~ossible  because of the near 
absence of fossil evidence from key south- 
e m  land masses such as Africa. With rare 
exceptions (2, 3), available information on 
Cretaceous dinosaurs from Africa is based 
on preliminary paleontological surveys in 
the Sahara (4) ,  isolated or fragmentary 
bones and teeth (5), and a small fossil col- 
lection from Egypt that was destroyed dur- 
ing World War 11 (6, 7). We  report here on 
the discovery of dinosaurs from Lower Cre- 
taceous rocks in the southem Sahara Desert 
(Fig. 1)  that impact on the understanding of 
late Mesozoic dinosaurian bioeeoera~hv. 

The fossils include the first "refathely 
complete skeleton of a theropod dinosaur 
from the Cretaceous of Africa, Afrovenator 
abakensis, n. gen. n. sp. (8). The skull is low 
compared to that of other large-skulled 
predators such as Allosaurus (9). Maximum 
height at the orbit is less than one-third the 
skull length (Fig. 2A). Unlike Allosaurus 
and many other theropods, cranial crests 
and rugosities are poorly developed. The 
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of Organ~smal B~ology and Anatomy, University of Chica- 
go, 1027 East 57 Street, Chicago, lL 60637, USA. 
D. B. Dutheil, 48 rue de la Rochefoucauld, 75009 Paris, 
France 

lacrimal crest, for example, has a low, 
rounded profile. As in many theropods, the 
lacrimal crest is hollowed by a pneumatic 
cavity. The maxilla has a slit-shaped pro- 
maxillary fenestra, a small, posteriorly posi- 
tioned maxillary fenestra, and sockets for 14 
blade-shaped teeth. The quadrate is tall 
with a dorsoventral length more than one- 
half the skull height at the orbit. 

The skeleton is relatively gracile judging 
from the length and diameter of the long 
bones (Fig. 2C). Cervical vertebrae have 
deep pleurocoel cavities and articulate in an  
upward curve that elevates the skull above 
the dorsal column. The forelimb appears to 
be similar in length to that of Allosaurus but 
has different proportions within the limb. 

Fig. 1. Paleogeographic map of land surfaces 
during the Early Cretaceous (Barremian-Hauterlv- - - -  

H.-D. Sues, Department of Vertebrate Palaeontology, ian, 130 million years ago). Mollweide projection 
Royal Ontario Museum, 100 Queen's Park, Toronto, On- w~th lat~tude and longitude llnes spaced at 30" 
tario M5S 2C6, Canada. intervals (longitude greater than 120" not shown) 
*To whom correspondence should be addressed. (37). +, dinosaur locality. 

In Afrovenator the humerus is relatively 
longer, the carpus is flatter, the first meta- 
carpal has stouter proportions, and the un- 
gual on the third digit is particularly small 
(Fig. 2D and Table 1) (10). The pelvic 
girdle is similar in structure to that of Allo- 
saurus (Fie. 2B). The ilium has a moderatelv ~" , 

developed supraacetabular crest and brevis 
fossa, the ischium has a tra~ezoidal obtura- 
tor process and well-developed distal foot, 
and the pubis has a slender shaft and small 
distal foot. The hind limb has more elon- 
gate distal segments than in Allosaurus (Ta- 
ble 1). The femur is only slightly longer 
than the tibia and has a broad wing-shaued - A 

anterior trochanter. The astragalus pre- 
serves the base of a low plate-shaped as- 
cending process (Fig. 2E), and the foot is 
slender and elongate (Fig. 2C). 

lurassic and Cretaceous thero~ods be- 
long to one of two clades, Ceratosauria and 
Tetanurae (1 1 ), which diverged during the 
Late Triassic (Fig. 3). The skeletal remains 
of Afrovenator clearlv indicate that it be- 
longs within the tetanuran radiation (Fig. 
3A)  (12). Tetanuran synapomorphies in 
the skull include an opening in the antor- 
bital fossa (maxillary fenestra), a pneumatic 
excavation in the jugal, and the position of 
the posteriormost maxillary tooth (anterior 
to the orbit) (Fig. 2A). Tetanuran synapo- 
morphies in the postcranial skeleton in- 
clude s~ecialized wrist bones that constrain 
motion of the hand to a transverse plane 
(semilunate carpal with an articular troch- 

Table 1. Length measurements (millimeters) and 
ratlos In Afrovenator and Allosaurus (1 0). All un- 
guals are measured perpendicular to the alticular 
end. Parentheses indicate estimation. 

Measurement A frovenator Allosaurus 

Forelimb 
Humerus (h) (400) 
Metacarpal I ( I )  62 
Metacarpal I I  ( 1 1 )  135 
Diglt I-phalanx 1 (1-1) 1 12 
Dig~t I ,  ungual 80 
Dig~t I I ,  ungual 76 
Digit Ill-phalanx 3 53 
Diglt I l l ,  ungual 40 
I/h 0.1 6 
Il/h 0.34 
1/11 0.46 
1/1-1 0.55 

Hind limb 
Femur (f) 760 
Tibla (t) (687) 
Metatarsal I ( I )  103 
Metatarsal IV (IV) 321 
Digit Il-phalanx 1 122 
Digit I I  (or I l l )  ungual 76 
Digit IV-phalanx 1 90 
Dig~t IV-phalanx 2 106 
Diglt IV-phalanx 3 87 
Vf 0.90 
IV/t 0.47 
I/IV 0.32 
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lea for a disc-shaped radiale) (Fig. 2D). The 
hand is similar to that in other tetanurans, 
which show a reduction in the size of digit 
111 as compared to digits I and I1 (Fig. 2D). 
In the hind limb the femur has a blade- 
shaped anterior trochanter (Fig. ZC), and 
the astragalus has a plate-shaped ascending 
Drocess (Fie. 2E). . -  . 

The phylogenetic relationships between 
Afrowenator and other basal tetanurans were 
evaluated by cladistic analysis of skeletal 
characters (Fig. 3A). That analysis supports 
the monophyly of three principal tetanuran 
subgroups: Torvosauroidea, Allosauroidea, 
and Coelurosauria. Torvosauroids include 
Afrowenutor, the Laurasian genera Tororosau- 
rus, Ewtreptospondylus , and Chilantaisaurus 
( I  3), and tentatively the spinosaurids Spino- 
saurus and Baryonyx (6,14). Although there 
is some homoplasy among basal tetanurans, 
several cranial features support torvosauroid 
monophyly, including the long anterior ra- 
mus of the maxilla and the transversely 
broad ventral process of the postorbital (1 2). 
Afrowenator appears to represent a basal lin- 
eage within Torvosauroidea because it lacks 
the sickle-shaped ungual on the first digit of 
the hand that characterizes more advanced 
torvosauroids (Fig. 3A) (12). Allosauroids 
are united by a suite of cranial features that 
are unique to the group (1 2), which includes 
Allosaurus and Anocanthosaurus from North 
America (9, 15), Monolophosaurw, Sinraptor, 
and Yangchuanosaurus from Asia (16), and 
Cryolophosaurus from Antarctica ( 1  7). Coe- 
lurosauria has been recognized as a mono- 

phyletic group that includes Ornithokstes 
from the Upper Jurassic of North America 
( 18) and all more derived theropods includ- 
ing birds (1 1, 19). Allosauroids and coelur- 
osaurs, united here as Neotetanurae, share a 
more recent common ancestry than either 
does with torvosauroids (12). 

Sauropod remains are particularly abun- 
dant in the Lower Cretaceous rocks that 
yielded Afrowenator and represent a new spe- 
cies (20). Cranial remains include fragmen- 
tary jaw bones that preserve teeth with broad 
crowns similar to those in Camarasaurus 
(Fig. 4). The postcraniumalso resembles Cam- 
arasaurus. The sternal ~ la t e s  are oval, the 
distal caudal vertebrae are short anteropos- 
teriorly, the inner two digits of the hand 
terminate in large unguals, and the pubic 
blades are broad (Fig. 5A). Unlike Camara- 
saurus, however, the tooth crowns are den- 
ticulate, the neck is considerably longer, 
and the neural spines of presacral vertebrae 
are single rather than bifurcate. Although 
the relation between the new sauropod and 
Upper Jurassic Camarusaums, Haplocantho- 
saums, or Brachiosaurus remains unclear, 
there is no affinity between the new sauro- 
pod and diplodocids or titanosaurids, which 
account for nearly all Cretaceous sauropod 
remains (2 1 ). 

The skeletal remains of Afrowenator and 
the new sauropod were buried in shallow, 
mud-filled channel deposits on a floodplain 
located approximately 5' north of the paleo- 
equator (Figs. 1 and 5) (22). Nearly all of the 
skeletal remains show evidence of fluvial 

Fig. 2. Skeletal anatomy 
of Afrovenator abaken- 
sis. (A) Skull reconstruc- 
tion in left lateral view; 
(B) pelvic reconstruction 
in left lateral view; (C) 
skeletal reconstruction 
(length is approximately 
9 m); (D) partial left 
manus in lateral view; 
(E) right astragalus and I 

c , '  calcaneum in anterior 
view (ascending process 
based on articular de- 
pression on distal tibia); 
(F) left metatarsus in 
proximal view (anterior 
toward top). Scale bar in 
(A), (B), and (Dl to (F) is 
10 cm. Scale bar in (C) is 
1 m. I-IV, manual or ped- I 

al digits I-IV; as, astraga- 
lus; asp, ascending pro- 
cess; ca, calcaneum; il ,  
ilium; is, ischium; j, jugal; 
jpe, jugal pneumatic ex- 
cavation; I ,  lacrimal; Ipe, 
lacrimal pneumatic ex- 
cavation; m, maxilla; mf, 
maxillary fenestra; obp, obturator process; pmf, promaxillary fenestra; po, postorbital; pu, pubis; q, 
quadrate; sc, semilunate carpal; sq, squamosal. 

transport (Fig. 5). The channel sequences 
pass upward into paleosols and occasional 
thin lacustrine limestone. The absence of 
caliche deposits and marked periodic growth 
in fossilized wood suggests that a relatively 
uniform climatic regime may have prevailed 
(22). Associated nondinosaurian vertebrates 
include the coelacanth Mawsonia, the dip- 
noan Ceratodus, the semionotid Leptdotes, a 
pleurodiran turtle, and crocodyliforms. The 
nondinosaurian vertebrates from the Tioura- 
rkn beds and other Lower Cretaceous sites in 
Niger (23) are similar to those from Lower 
Cretaceous (Aptian-Albian) rocks in Brazil 
(24). The fauna from the Tiourarkn beds 

Theropoda 

B 

Fig. 3. Phylogenetic and temporal relationships 
among basal neotheropods. (A) Cladogram based 
on phylogenetic analysis of 44 characters (12) in 
seven terminal taxa (38), with Herrerasauridae and 
Eoraptor as successive outgroups (39). Numbers 
at nodes indicate total number of synapomorphies 
under delayed transformation (40). Parenthetical 
numbers indicate the portion of total synapomor- 
phies for a given node that may occupy a more 
basal node (due to missing data or homoplasy). 
The cladogram is strongly supported by the data 
(consistency index, 0.85; rescaled consistency in- 
dex, 0.76; retention index, 0.89). (B) Phylogram 
based on the cladogram and recorded temporal 
ranges, which are calibrated on a recent time scale 
(41 ). 1, Theropoda; 2, Neotheropoda; 3, Tetanu- 
rae; 4, Neotetanurae; 5, Allosauroidea; 6, Towo- 
sauroidea. 
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may be somewhat older (Hauterivian or Bar- 
remian, 125 to 135 million years ago) be- 
cause they lie stratigraphically below the Ga- 
doufaoua fauna from eastern Niger, which is 
regarded as Aptian or Albian in age (25). 

Although biogeographers have long rec- 
ognized distinct Laurasian and Gondwanan 
biotas, this difference has not always been 
apparent (26), especially among dinosaurian 
faunas (27). Recent discoveries of ceratosau- 
rim (abelisaurid) theropods and titanosaurid 

Fig. 4. Maxillary or dentary tooth from the new 
broad-toothed sauropod in (A) medial and (B) lat- 
eral views. Scale bar, 1 cm. 

Fig. 5. Sauropod skele- A 
ton in mud-filled river 
channel at the Tamerat 
site. (A) Plan view of sau- 
ropod skeleton. (B) Mir- 
ror rose diagram show- 
ing the preferred bone 
orientation that arose 
from fluvial transport (n 
= 40, mean = 93.6"; 
current direction almost 
due west). (C) Scaled 

sauropods in several Cretaceous horizons in 
Argentina (28), nevertheless, have led to 
the view that these taxa are components of a 
distinct Gondwanan fauna (29). 

Except for South America, however, the 
dinosaurian fossil record for southern conti- 
nents during the Cretaceous is poor. Cerato- 
saurian (abelisaurid) theropod finds outside 
South America are limited to a few cranial 
fragments from India (30). Unquestionable 
titanosaurid remains have been reported re- 
cently from the Lower Cretaceous of Africa 
(3), but titanosaurid remains including well- 
preserved skeletons (3 1, 32) are also known 
from several Cretaceous localities in Laur- 
asia. Titanosaurids clearly were not restricted 
to Gondwana during the Cretaceous. 

The new African dinosaurs help resolve 
biogeographic events during the early phase 
of the break-up of Pangaea. The presence of 
Afrowemm and a broad-toothed sauropod 
on Africa does not support the existence of a 
distinct Gondwanan fauna during the Cre- 
taceous. Afrovenator does not share a close 
relation with ceratosaurian (abelisaurid) 
theropods but rather is more closely related 
to tetanurans, which are known from both 
northern and southern continents. Likewise, 
the sauropod lies outside the titanosaurid 
radiation and is more closely related to 
broad-toothed forms that are known from 

cut-away view showing 
the bones of the sauro- 
pod skeleton as they 
were found in the river 
channel, with the tail 
pointing downstream 
and dipping gently to- 
ward the channel floor. - 
The skeleton is con- 
tained within only 79 cm 
of the channel deposit. A 
three-dimensional com- 
puter model of the bones 
and a 5-cm-step con- 
tour map of the channel 
floor were generated 
from coordinates on a 
site map and 93 depth 
measurements to the 
skeleton and channel mrnudstone > l  cm root traces 8 sauropod bone 
floor. Light was cast on n s i l t  

clay pebble 
conglomerate * so11 sltckens~des 0 small Veflebrate 

the model from the up- bone or scales 
1 to4mm 

per left creating shad- 
ows on the channel floor (42). Cross sections of channel floor and channel fill sediments are shown 
anteriorly and posteriorly, respectively (tick marks equal 50 cm). 

both northern and southern continents. The 
African fossils, along with earlier finds from 
Argentina, Antarctica, and Australia (17, 
33), indicate that several lineages of tetanu- 
ran theropods and broad-toothed sauropods 
had achieved a cosmopolitan distribution 
before the break-up of Pangaea. Among 
theropods, the recent discovery of the Lower 
Jurassic tetanuran Cryobphosaurus (1 7) in- 
dicates that torvosauroid. allosauroid. and 
coelurosaur lineages already had diverged by 
the Early Jurassic (Fig. 3B) (34). 

By the Late Jurassic, a persistent (al- 
though possibly intermittent) land connec- 
tion from the north through Europe (Gi- 
braltar) to Gondwana permitted enough ex- 
change to maintain relatively uniform di- 
nosaurian faunas (35). This land connec- 
tion seems to have been severed durine the " 
Early Cretaceous at about the same time as 
the southern continents themselves were 
becoming biogeographically isolated. As a 
consequence, there is no recognizable phy- 
logenetic unity among dinosaur groups that 
persisted on Gondwanan continents during 
the Cretaceous. Rather. these cosmo~olitan 
dinosaur groups experienced different fates 
on each southern continent as isolation 
increased during the ~ret&ous. The dis- 
tribution of Afrovenator and other large- 
bodied Cretaceous theropods support that 
biogeographic scenario. In Asiamerica, al- 
losauroids and then coelurosaurs became 
the dominant carnivores during the Creta- 
ceous, whereas torvosauroids apparently 
went extinct. In South America, abelisau- 
rids became the dominant t h e r o d .  where- . . 
as tetanurans were rare. And in Africa, 
torvosauroids such as Afrovenator and the 
enigmatic spinosaurids (6, 36) survived as 
the dominant large carnivores during the 
Cretaceous, whereas abelisaurids, allosau- 
roids and nonavian coelurosaurs have yet to 
be definitelv recorded. The distinct dino- 
saurian faunas on Asiamerica, South Amer- 
ica, and Africa arose during the Cretaceous 
from differential survival of once wide- 
spread lineages with origins dating back to 
the Early Jurassic. 
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was more likely a result of some other, un- 
known urocess. This situation urovided an 
opportunity to measure the effects of in- 
breeding in a natural setting that would al- 

An Experimental Study of lnbreeding Depression low new animals to become established 

in a Natural Habitat without strong competition from an existing 
resident population (1 5). 

Julie A. Jimenez, Kimberly A. Hughes,* Glen Alaks, 
Laurie Graham,"robert C. Lacy$ 

lnbreeding is known to lead to decreased survival and reproduction in captive populations 
of animals. It is also important to know whether inbreeding has deleterious effects in 
natural habitats. An estimate was made of the effects of inbreeding in white-footed mice, 
Peromyscus leucopus noveboracensis, derived from a wild population. This study dem- 
onstrates that inbreeding had a significant detrimental effect on the survivorship of mice 
reintroduced into a natural habitat. This effect was more severe than the effect observed 
in laboratory studies of the population. 

Inbreeding adversely affects captive ani- 
mals in a number of ways (1-5). However, 
captive animals are not exposed to many of 
the causes of mortality afflicting natural 
populations, such as predation, weather ex- 
tremes. food stress, and euidemic disease. 
Deleterious effects of inbreeding have been 
demonstrated in natural populations of 
plants (6) and a few species of invertebrates 
(7) and fish (a), but the mobility and long 
generation lengths of mammals and other 
tetrapods have made it difficult to estimate 
the effect of inbreedine on survivorshi~ in " 
natural populations of these animals (5). 
This difficultv has led some researchers to 
question whe'ther estimates of inbreeding 
depression made in captive populations can 
be used to predict the effects of inbreeding 
in nature or, indeed, whether natural uou- 

A .  

ulations experience inbreeding depression 
at all (9). Worldwide habitat destruction 
has forced many formerly natural popula- 
tions into captivity for survival [such as the 
black-footed ferret Mustela nigripes ( lo)] ,  
and some captive populations have been 
inbred by necessity (11) .  The continued 
survival of many species depends on captive 
propagation before reintroduction (12), but 
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inbreeding may compromise the fitness of 
reintroduced animals (7). 

We developed a mark-release-recapture 
experiment to measure the effects of in- 
breeding on survivorship in a natural habi- 
tat. White-footed mice, Peromyscus leucopus 
noweboracensis, were collected from an area 
in which they were abundant and were used 
to found a laboratory population (13). In- 
bred and noninbred descendants of the wild- 
caught mice were released back into the field 
site from which the progenitors had been 
captured (Fig. 1) and were surveyed by trap- 
ping (14). A census of the field site in 1990 
before the release resulted in only three cap- 
tures during 1350 trap nights (0.002 mice per 
trap night). In 1988, when the progenitors of 

Fig. 1. Map of field site. Numbers at 
the ends of arrows represent the 
number of mice that were recap- 
tured in the same area in which they 
were originally released. Numbers 
on directional arrows represent 
mice that were recaptured in a dif- 
ferent area from the one in which 
they were released. Numbers on 
the figure sum to 124 because one 
mouse was recorded in all three ar- 
eas. The field site comprised non- 
public areas of the Chicago Zoolog- 
ical Park, Brookfield, Illinois. All 
three areas are within a mixed de- 
ciduous forest. The broken line rep- 
resents a fenced boundary be- 
tween forested and nonforested ar- 
eas. Wavy lines are water-depth 
contours. An old railroad bed and 
wooden bridge are indicated by solid 

Of the 786 animals released, 123 (15.7%) 
were recaptured at least once (Table 1). 
Mice were recaptured up to eight times for a 
total of 170 recaptures. Some were recap- 
tured as long as 127 days after release, sug- 
gesting that many of the laboratory-bred 
mice became successfully established in the 
natural habitat. The low caDture rate for wild 
mice can partially explain the high recapture 
rate for lab-reared animals. With few resi- 
dent mice to force dispersal from the site, the 
reintroduced population quickly became es- 
tablished. Recapture histories for individual 
mice are available over the Internet (16) or 
from the authors. 

Movement did occur among trapping ar- 
eas and probably into nontrapped areas of 
the field site as well (Fig. 1). Most mice 
were reca~tured within 50 m of the site of 
release. df the 29 mice recaptured on a 
different trauline from their release site. 
10 males and 6 females were inbred and 7 
males and 6 females were noninbred. 
There is no significant effect of sex and 
inbreeding status on the tendency to move 
between areas (goodness of fit test based 
on log-linear models: G = 1.464, P > 0.4, 
with 2 df and expected frequencies calcu- 
lated from the recapture data in Table 1).  
Thus, inbred mice do not move among 
the three release sites at a significantly 

lines. 
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