
our measurements of He and Xe), the 
transition to  SL for a pure noble gas bub- 
ble is smooth: A t  low levels of drive, the 
bubble pulsates but n o  light is emitted, 
and as the drive is increased, the bubble 
smoothlv distorts until its a m ~ l i t u d e  of 
pulsation is large enough to concentrate 
the energy to the level required for SL. 
This observation stands in contrast to  the 
behavior of doped bubbles (air for exam- 
ple) where the transition is abrupt ( 1 ) .  For 
the case of a pure N2 bubble, the dynam- 
ical properties are difficult to  probe be- 
cause of its nonsteady behavior (Fig. 5 ) .  
The  properties of this bubble can only be 
measured in real time without the benefits 
of long-time averaging. Such measure- 
ments find a n  expansion ratio (R,/R,) 
that varies in  time between 6 and 10. A t  
low sound field amplitudes (where the N, 
bubble does not elow). the ~ulsat ions are - . ,  

periodic and in agreement with the Ray- 
leigh-Plesset eauations. - 

The  transduction of sound into light is 
surprisingly efficient: Light from the 2% 
Xe mixture is comparable to  the bulk 
sound energy dissipated by viscosity in  the 
absence of the bubble. In  fact, as the water 
containing the 2% Xe bubble was cooled 
to 1°C, the overall intensity increased by a 
factor greater than 10 to a n  average power 
of 0.5 p W .  If the flash widths of such a 
bubble are still bounded by the 100-ps (5) 
characteristic of air, then the peak powers 
will be greater than 0.15 W (because there 
are 33,000 flashes per second in this reso- 
nator). 

From a practical perspective, the sensi- 
tivity of SL to gas content and ambient 
temperature suggests that further substan- 
tial improvements in  the characteristics of 
the emitted radiation are possible. Theo- 
retically, the picture of SL being generated 
by the implosion of a shock wave that is 
launched bv the co l la~s ine  bubble is in- . - 
complete. Shock dynamics are not  affect- 
ed bv small eas im~uri t ies .  A n  unidenti- 
fied physicalYprocess (that is sensitive to  
doping with noble gases) controls the 
long-time dynamics and the transition to  
SL. In this regard, the ambient radius re- 
mains a key theoretical unknown (for 1% 
Ar,  R, = 4 Fm; but for 2% Xe, R, = 8 
pm;  whereas for pure N2, it is nonsteady). 
T h e  light-emitting mechanism is also 
strongly dependent o n  the gas content of 
the bubble. The  spectrum for H e  is steeper 
than can be accounted for bv thermal 
Bremsstrahlung from hot gases'. Perhaps 
the high density and small size of the 
plasma that forms in the imploded bubble 
need to be accounted for in a theory of the 
spectrum of SL. A unifying feature of our 
investigation is that although SL is a sen- 
sitive phenomenon, it is nevertheless ro- 
bust throughout a rich parameter space. 
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Electronic Coherence and Nonlinear 
Susceptibilities of Conjugated Polyenes 
Shaul Mukamel, Akira Takahashi, Hong Xiang Wang, 

Guanhua Chen 

A dynamic theory that connects electronic motions and the nonlinear optical response of 
conjugated polyenes is developed by introducing the concept of electronic normal modes. 
A useful picture for the mechanism of optical nonlinearities is obtained by identifying the 
few dominant modes. This quasi-particle electron-hole representation establishes a close 
analogy with small semiconductor particles (quantum dots) and is very different from the 
traditional approach based on electronic eigenstates. The effective conjugation length 
(coherence size), which controls the scaling and saturation of the static third-order 
susceptibility X(3)  with the number of double bonds, is related to the coherence of the 
relative motion of electron-hole pairs created upon optical excitation. 

T h e  mechanism of optical nonlinearities 
of conjugated polyenes constitutes a n  
open challenge that  poses important fun- 
damental as well as practical problems re- 
lated to  the synthesis of new optical ma- 
terials with large susceptibilities (1-4). 
Questions such as structure-property rela- 
tions (5 )  and comparison with other mo- 
lecular, semiconductor, or metallic mate- 
rials (6)  have drawn considerable atten- 
tion. Quantum chemists traditionally cal- 
culate susceptibilities by expanding them 
using the global (many-body) electronic 
eigenstates, and optical properties are 
then related to  the eigenvalues and to 
matrix elements of the dipole operator. 
Physical insight is developed in terms of 
the nature of the relevant eigenstates, 
which serve as a convenient link between 
experiment and theory. Despite the tre- 
mendous progress in computational meth- 
ods, the calculation of the  global eigen- 
states remains a very demanding objective, 
which restricts such calculations to rela- 

Department of Chemistry, University of Rochester, Roch- 
ester, NY 14627, USA. 

tivelv small svstems ( 2 .  7 ) .  Finite field . ,  , 

methods, whiih are based o n  calculating 
the ground-state energy in the presence of 
a n  external field, are much more effective 
for off-resonant susce~tibilities, which are 
most relevant for device applications (7). 
However, they do not provide the fre- 
quency dependence and shed very little 
light o n  the mechanism of the optical 
resDonse. 

It has long been recognized that, by vir- 
tue of their delocalized electronic states. 
conjugated polyenes may have very large 
polarizabilities (8). A scaling of the third- 
order susceptibility X ( 3 )  - Nb, where N is 
the number of carbon atoms and 4 5 b 6, 
was found for short chains. A crossover of 
the scaling exponent to b = 1 is expected, 
however, for larger sizes, because the exis- 
tence of a proper thermodynamic limit (that 
is, the independence of macroscopic proper- 
ties on system size) requires that X(3) /N 
should saturate and become inde~endent  of 
N .  This saturation reflects some effective 
conjugation length. Its origin is puzzling if 
we approach the problem from the chemists' 
perspective. Off-resonant susceptibilities de- 
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pend on the collective effect of many eigen- 
states. and thus, it is verv difficult to develoo 
physical intuition by coksidering individual 
eieenstates. In addition, the molecular orbit- 

%, 

als are delocalized irrespective of molecular 
size, and they provide no clue for such a 
coherence size. In reality, conformational 
disorder and imperfect materials can result 
in a finite conjugation length, but physically 
we expect that even an ideal infinite chain 
should have an intrinsic coherence size. 

In contrast, conventional treatments of 
semiconductors are based on a completely 
different, quasi-particle picture (6, 9). The 
structure, transport, and optical properties 
are not discussed in terms of the global 
eigenstates but rather are treated by using 
elementary excitations related to electron- 
hole pairs. This is a more modest approach 
because it does not attempt to obtain all 
properties in a single calculation. However, 
by using this approach it becomes possible to 
treat much more complex systems than is 
possible with the molecular "all or nothing" 
approach. The connection between the qua- 
si-oarticle and the molecular viewooints is 
not obvious, in part because semiconductors 
are usually treated in momentum (k) space, 
which is most suitable for infinite, transla- 
tionallv invariant svstems, whereas chemical 
intuition is based 'prima;ily on real space 
arguments. 

In this report, we propose an  approach 
that combines the quasi-particle semicon- 
ductor ideas with the chemical real space 
representation of chemical bonding. We  use 
this approach to analyze the size scaling and 
saturation of the off-resonant susceptibility 
X ( 3 )  of polyacetylene. Our picture is based 
on the single electron, reduced density ma- 
trix (10) that maos the electronic motions . . 
onto a set of coupled harmonic oscillators. 
These electronic normal modes are then 
used to develop a different type of chemical 
intuition by relating the electronic charges 
and motions directly to the optical re- 
sponse, without ever introducing global mo- 
lecular eigenstates. We  argue that, in the 
same way that normal modes are very effec- 
tivelv used in the descriotion of nuclear 
vibrations, they can be apphed to electronic 
motions as well. 

Our calculation starts with the Pariser- 
Parr-Pople (PPP) tight-binding Hamilto- 
nian for n electrons, which includes short- 
and long-range Coulomb interactions, and 
reproduces many important properties of 
conjugated polyenes (2, 1 1 ) 

In this model, each carbon atom has a single 
p orbital. We  introduce the binary electron 
operators oxm = ?,'&?nu, where tiu (tnU) cre- 
ates (annihilates) an electron of spin a at the 
nth carbon atom. These operators satisfy the 
Fermi anticommutation relation 

The first term on the right side of Eq. 1 is 
the Hiickel Hamiltonian, where tmn is the 
hopping integral between the nth and the 
mth atoms; tn,, , , = p - P'x,, and other- 
wise tnm = 0; x, is the deviation of the nth 
bond length from the mean bond length 
along the chain. In all calculations, we ysed 
p = -2.4 eV, and p' = -3.5 eV A-'. 
The second and third terms include elec- 
tron-electron Coulomb interactions. A n  
on-site Hubbard repulsion is given by U = 
U,/E, and a repulsion between charges on 
the nth and the mth atoms is given by the 
Ohno formula 

where rnm is the distance between atoms n 
and m. Uo, set equal to 11.13 eV, is the 
unscreened on-site repulsion, E = 1.50 is the 
dielectric constant, and a. = 1.2935 A. The 
fourth term describes the a bonds as a set of 
harmonic oscillatorsA K is the spring co5- 
stant (K = 30 eV A-2), and f = 0.14 A 
represents the difference in the mean bond 
length with and without the .rr electrons and 
controls the average bond length. These 

O b '  
I 

40 80 

N 

Fig. 1. (A) Variat~on of the optical gap E (dashed 
curve) and the static susceptibility ~ ( ~ 1  ik units of 

electrostatic units (solid curve) with molec- 
ular size N. (6) Variation of the exponent b = 

d[ln ~(~)] /d[ln 4, which controls the scaling of xc3) 
with size, N. (C) Variation of the inverse participa- 
tion ratio K, which illustrates the coherence length 
associated with the density matrix, with N. 

parameters reproduce the experimental ab- 
sorption band edge E, for polyacetylene (E, 
= 2 eV). The fifth term represents the 
dipole interaction between the .rr electrons 
and a uniform external electric field E(t) 
polarized along the chain (7 direction). The 
polarization operator is 

where -q is the electron charge and 2, is 
the 7 coordinate of the nth atom. 

Our approach focuses on the reduced 
single electron density matrix defined by 
the expectation value of 

with /$(t)) being the complete (many-elec- 
tron) time-dependent wave function. Be- 
cause both the Hamiltonian and the static 
Hartree-Fock ground state are symmetric 
with respect to spin exchange, the wave 
function must also have this symmetry, and 
we thus omit the s ~ i n  index. 

The charge deksity, which is the key 
quantity in chemical dynamics, is given by 
the diagonal elements p,,. The optical po- 
larization can also be calculated with these 
diagonal elements 

The off-diagonal elements pnm with n + m 
represent spatial coherences. The bond order 
pn is related to the off-diagonal nearest 
neighbor elements p,,, (see discussion 
below). The density matrix thus provides a 
compact representation of charge density 
and bond order that should help establish 
structure-property relations. The quantity 
pnm(t) represents the coherent and correlat- 
ed motion of an electron-hole oair created 
optically, m and n being the electron and 
hole positions, respectively. By looking di- 
rectly at the density matrix in real space, we 
can consider systems with a large number of 
electrons and study collective electronic mo- 
tions. The conventional use of the density 
matrix in nonlinear optics is based on ex- 
pressing it in terms of the global states of the 
entire system (1 2). Here, on the other hand, 
we consider the single particle reduced den- 
sity matrix in a many-body system that is a 
completely different object. In metals, elec- 
trons and holes are screened and therefore 
uncorrelated. The elementary excitations 
(plasmons) are then related to charge density 
fluctuations (8), which can be described by 
the diagonal elements of the reduced density 
matrix. By looking at the off-diagonal ele- 
ments as well, we can define the coherence 
size and describe correlated particles. 

From the Schrodinger equation and the 
commutation relations for Fermi operators, 
we obtain a closed equation of motion for 
the density matrix (1 3) 
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where f i  is Planck's constant divided bv 2 ~ r  
and h(t)  is the Fock operator matrix of the 
driven molecule 

hnm(P) = tnm + 2'nmz'nePee 
e 

In the derivation of these equations, we have 
used the time-dependent Hartree-Fock pro- 
cedure, which assumes that the total wave 
function can be represented by a single 
Slater determinant at all times. Equation 7 
may be solved in the following steps: First, 
we decompose p as p = p(O) + Sp,  where p(O) 
is the density matrix of the Hartree-Fock 
ground state and S p  = p(') + p ( l )  + p(3) + 
. . . is induced by the external field where p(j) 
is to jth order in the external field. The Fock 
ouerator matrix h is decom~osed in the same 
way. Substituting these quantities into the 
nonlinear Eq. 7a, we find that Spnm is cou- 
pled to Sp,,,, as well as to bilinear products 
Spn8m,Spn,,mt,. W e  can then solve the equa- 
tion successively, order by order, in the ex- 
ternal field. In the zeroth-order calculation 
[p(O)], we have optimized the geometry by 
minimizing the energy with respect to xn, 
which results in bond alternation. 

In the following, we analyze the third- 
order off-resonant electronic susceptibility 
X(3) calculated when the field E(t) has zero 
frequency. It is obtained by dividing the 
optical polarization calculated using p(3) by 

Fig. 2. Characteristics of the reduced density 
matrix of polyacetylene with 80 carbon atoms. 
The panels from top to bottom correspond to pol, 
j = 0, 1 ,  2 ,  3, respectively. (A) Charge density d, 
for p(') and ~ ( ~ 1 ,  and bond orderp, for pcO) and p('). 
(B) The antidiagonal projections of p,, plotted 
versus n - m with a fixed n + m = N + 1 .  The 
absolute scale in the vertical axis corresponds to 
a typical value of the electric field strength jE1 = 

1 V A- ' .  The curves themselves do not depend 
on the field strength. 

E3. Figure 1A shows the variation of the 
absorption band gap E, and X(3) with size. 
Both quantities begin to saturate to the in- 
finite size value at about 40 carbon atoms. 
The nonlinear susceptibility increases by a 
factor of 670 when the molecular size is 
increased from 2 to 80 atoms. Figure 1B 
shows the slope b of this curve [X(3) - Nb]; b 
reaches a maximum value of b - 5 at N = 6 
and then decreases gradually toward the 
thermodynamic limit b = 1. 

One can obtain a clear insight by exam- 
ining some characteristic projections of the 
single-electron density matrices underlying 
X(3). W e  define the alternating component 
of charge density (the diagonal elements of 
P) 

dn = (- 1)n-1(2pnn - 1 )  (8)  

which measures the magnitude of the 
charge oscillations, and the alternating 
component of bond order (the first off- 
diagonal elements of p )  

where p is the average value of p,,,,, + 
p,,,,,. The quantities dn and pn can also be 
expanded in powers of E: These quantities 
for p(j), j = 0 . . . 3, and N = 80 are 
displayed in Fig. 2 A .  The  quantities p(') 
and 0(3) are characterized ~rimari lv  bv , , 
chargk density and have a vaiishing bond- 
order change. W e  can see charge density 
wave-like electronic structure in both or- 
ders. whereas o(O) and o ( l )  are characterized 
by a' bond alternation knd no charge densi- 
ty. In the static Hartree-Fock ground state, 

Fig. 3. Projections of the density matrix to first, 
second, and third order in the external field (from 
top to bottom) on the electronic normal modes for 
three different molecular sizes. The quantity a!) is 
the component of thejth order density matrix cor- 
responding to the B,(v) electronic mode when j = 

1 or 3 and the A,(v) mode when j = 2. The dotted 
line is a guide to the eye. Note the appearance of 
a strong 6, mode in 6p(3), which is absent in 6p('). 
This contribution is induced by anharmonicities. 

the bond order is almost uniformly alternat- 
ed, namely, pAO) is almost independent of n .  
In second order, we see that the strength of 
bond alternation is reduced around the 
chain center. W e  thus show pn for p(O) and 
p ( l )  and dn for p(') and ~ ( ~ 1 .  

A complementary interesting perspec- 
tive is obtained by considering the "antidi- 
agonal" projection, that is, p;i plotted ver- 
sus n - m with n + m held fixed at  n + m 
= N + 1 (Fig. 2B). Note that p:: = 0 
when n - m is even and n + m .  Thus, we 
show p:! where n - m is odd. W e  find that 

is symmetric in zeroth and second order 
and is asymmetric in first and third order. 
Figure 2 B  shows that p(O) is almost diagonal, 
and essentially vanishes for In - ml > 
3. The  most notable difference among p(O), 
p( '),  p ( l ) ,  and p(3) is the gradual increase in 
the s ~ r e a d  of the off-diagonal elements. " 
which is a signature of field-induced spatial 
coherence of an electron-hole uair. The  
extent of this spread, that is, the number of 
sites that pA2 covers can be effectively de- 
scribed by the inverse participation ratio K, 

K-l  = z / p F ; l 2  
n-m 

with 

x IP!?~ 
n - m  

normalized to one, or 

~ I P ! ? I  = 1 
n-m 

In Fig. lC, we display the variation of K 

with N. The  saturation of this curve is a 
clear signature of the coherence size associ- " 
ated with the electron-hole pair. It corre- 
lates nicely with X(3) and the gap energy Eg. 
Numerous definitions and criteria have 
been suggested for the "conjugation length" 
or "coherence size." In periodic solids, the 
size of the Wannier functions is often used. 
The  present analysis applies to  finite sys- 
tems and suggests that K, which measures 
the antidiagonal cross section of the density 
matrix, is the natural microscopic coher- 
ence length responsible for X(3). 

T h e  direct correlation between spatial 
electronic coherences and d3) can be used , . 
to  develop a real space physical picture 
in which the molecule is described as a 
collection of driven, coupled harmonic 
oscillators. T h e  response of these oscilla- 
tors to  the external electric field and the 
anharmonic couplings between them de- 
termine the optical properties. The  oscil- 
lator picture can be established by a con- 
sideration of the homogeneous part of Eq. 
7a, which is linear in S p  and is indepen- 
dent  of the external field. W e  search for 
normal modes of the density matrix in  the 
form (13) 
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where a, are the frequencies (eigenvalues). 
Substituting this into the linearized time- 
dependent Hartree-Fock equation, we ob- 
tain an eigenvalue equation that defines a 
set of "electronic normal modes," which 
form a harmonic oscillator basis set. The 
density matrix can be expanded with these 
normal modes 

where 8p, are the expansion coefficients. 
The time-dependent Hartree-Fock equa- 
tion in the harmonic oscillator representa- 
tion then becomes 

The first, second, and third terms in the 
right side of Eq. 13 represent the driving 
force due to the external field, a nonlinear 
coupling between the external field and 0s- 
cillators, and anharmonic couplings among 
oscillators, respectively. Both the second 
and third terms describe effects higher than 
the first order in the external field. This 
representation provides an invaluable phys- 
ical insight regarding the origin of x ( ~ )  be- 
cause it allows us to think of the polyene as 
a collection of N2/2 coupled harmonic 0s- 
cillators. Note that nowhere did we have to 
introduce the global (many-body) molecular 
states. 

In Fig. 3 we display the normalized ex- 
pansion coefficients 

Fig. 4. The charge density dn(v) and bond order 
pn(v) profiles of the three electronic normal modes 
that dominate the static xc3): one 6, [B,(l)] mode 
for the first order, one A, mode for the second 
order, and two 6, [B,(l) and another B,] modes 
for the third order. Note the convergence of the 
dominant normal modes with size. 

of the density matrices versus the oscillator 
frequency f2, for three molecular sizes, N = 
20, 40, and 80. From top to bottom Fig. 3 
shows the dominant oscillators in the first-, 
second-, and third-order response. It is re- 
markable that there are onlv three dominant 
oscillators. Because the molecule has an in- 
version symmetry, the oscillators can be clas- 
sified as either symmetric (A,) or antisym- 
metric (B..). Two of the dominant oscillators 

, U, 

have a B, symmetry, and one has A, sym- 
metry. In Figs. 4 and 5 we display the char- 
acteristics of the density matrices +:, of 
these relevant oscillators. Figure 4 shows the 
charge density and bond order, whereas Fig. 
5 shows the antidiagonal projections. These 
figures illustrate how the coherence size as- 
sociated with these oscillators saturates for 
large sizes. This tendency toward saturation 
provides the microscopic mechanism for the 
saturation of x ( ~ ) .  

The reduced ground-state, single electron 
density matrix has been extensively used in 
the 1960s in the discussion of aromactivity 
and photochemistry (the Woodward-Hoff- 
man rules) (1 1) but was never pursued for 
the calculation of optical properties. Density 
matrices of few-level systems are very suc- 
cessfully used in the interpretation of mag- 
netic resonance and optical spectroscopies of 
simple chromophores. The present calcula- 
tion demonstrates the applicability of density 
matrices as a computational tool, and it pro- 
vides a direct and simple physical picture of 
the optical response. The combination of the 
real space "chemistry" view with the elec- 
tron-hole "physics" representations offered 
by off-diagonal elements of the reduced sin- 
gle electron density matrix in real space 
helps bridge the gap between the physical 
picture of semiconductor and molecular ma- 

n-m n-m n-m 

Fig. 5. The antidiagonal projections of the three 
electronic modes shown in Fig. 4. Shown are +;, 
versus n - m with n + m = N + 1 .  
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terials. We obtained electronic normal 
modes, which represent collective exciton 
states and treated them in the same fashion 
as nuclear vibrations. 

What makes this approach most natural? 
The conventional quantum chenlistry ma- 
chinery focuses on the independent particle 
(Hartree-Fock) picture, which is conceptu- 
ally very attractive. However, optical pro- 
cesses always create pairs of particles (that is, 
electron-hole  airs) rather than single parti- 
cles. The density matrix with its two indices 
keeps track explicitly of the electron and the 
hole and their correlations. This is why we 
have -NZ rather than N oscillators. It there- 
fore allows us to relate the optical response 
directly to the molecular structure and to 
motions of charges, without the tedious in- 
termediate step of calculating the global mo- 
lecular eigenstates. Because the essential 
physical picture is built in, this approach 
works well even when very drastic approxi- 
mations are made. We pay an initial price for 
squaring the space size, but this pays off 
immediately. because the number of relevant 
oscillators is small. A comparable accuracy 
in the sum over states approach would re- 
quire a much more elaborate configuration- 
interaction calculation to make up for the 
independent representation. The ap- 
plicability of an electronic normal mode har- 
monic picture to describe nonlinear effects 
may seem somewhat peculiar at first glance. 
Strictly speaking, the system is anharmonic 
(otherwise all nonlinear susceptibilities will 
vanish identically). However, the anharmo- 
nicities are weak and the normal modes pro- 
vide a convenient picture, in complete anal- 
ogy with vibrational spectroscopy. 

By varying the Coulomb interaction 
strength U (14), we can analyze directly its 
spectroscopic manifestations. If we switch U 
off, the density matrix and the electronic 
normal modes change drastically and the 
oscillator strength becomes much more uni- 
formly distributed among the various oscilla- 
tors. The collective nature of electronic mo- 
tions can therefore be attributed to the Cou- 
lomb interaction, which results in the accu- 
mulation of oscillator strength in an intense 
band-edge transition (13). By selectively 
switching off anharmonic coupling terms, we 
can address separately the roles of Coulomb 
and exchange interactions in the equa- 
tions of motion. In the sum over states 
approach, these are hidden in the wave 
functions and energies that enter into the 
multiple summations. 

The establishment of structure-property 
relations can be greatly facilitated with the 
oscillator approach because it is most nat- 
ural for describing effects such as substitu- 
tions with donors and acceptors, doping, 
chain dislocations, and so forth. It can also 
be easily applied to resonant spectrosco- 
pies where other cooperative effects are 



important. Another important advantage 
of the oscillator approach over the sum 
over states approach is that in the latter 
calculation there are important interfer- 
ences and cancellations among large terms 
(3). This makes it hard to develop physical 
intuition, and the computation becomes 
very sensitive to approximations such as 
truncation. Also in a sum over states ap- 
proach, it is impossible to identify before- 
hand which states will be dominant. The 
search for the "essential states" is a major 
difficulty in the modeling of optical non- 
linearities. In the oscillator approach, only 
the relevant oscillators show up in the 
equations of motion. We thus do not end 
up calculating a large number of unneces- 
sary quantities. 

It should be emphasized that there is no 
simple one to one correspondence between 
oscillators and individual eigenstates. The 

u 

oscillators are collective excitations, and 
each oscillator reuresents manv states. The 
precise relation between the two pictures is a 
hiehlv nontrivial auestion that needs to be - ,  

explored further. Symmetry plays a very dif- 
ferent role in the eigenstate and in the os- 
cillator representation. In the present model, 
the Hamiltonian is block diagonal into A, 
and B,, symmetry parts, and all of the oscil- 
lators may be classified into either A, or B,, 
type. In contrast to the description in terms 
of eigenstates of the Hamiltonian, where BU 
and A, states do not couple at all, Bu and A, 
oscillators do couple in the equation of mo- 
tion (Ea. 13). This fundamental difference 
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between the oscillator and the eigenstate 
expansions is related to the nonlinear form 
of the equations of motion (a product of 
BU and A, variables can have a B,, charac- 
ter), as opposed to the eigenstates expan- 
sion which are linear. Potentially this al- 
lows for a relatively inexpensive method 
for describing complex physical situations, 
compared with the expenditure required 
for eigenstate expansions. 

With the current representation, we can 
use the same language to describe very dif- 
ferent materials and answer some of the 
pressing questions raised recently (6). In 
particular, we can draw a close analogy be- 
tween conjugated polyenes and semiconduc- 
tor quantum dots (9). The physical picture 
of geometrically confined electron-hole 
pairs shows an origin in common with the 
blue shift of linear absorption as the size is 
decreased, and with the scaling and satura- 
tion of optical nonlinearities. 
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Simulating the Self-Assembly of Gemini 
(Dimeric) Surfactan ts 

S. Karaborni,* K. Esselink, P. A. J. Hilbers, B. Smit, 
J. Karthauser, N. M. van Os, R. Zana 

The morphologies and dynamics of aggregates formed by surfactant molecules are 
known to influence strongly performance properties spanning biology, household clean- 
ing, and soil cleanup. Molecular dynamics simulations were used to investigate the 
morphology and dynamics of a class of surfactants, the gemini or dimeric surfactants, that 
are of potential importance in several industrial applications. Simulation results show that 
these surfactants form structures and have dynamic properties that are drastically dif- 
ferent from those of single-chain surfactants. At the same weight fraction, single-chain 
surfactants form spherical micelles whereas gemini surfactants, whose two head groups 
are coupled by a short hydrophobic spacer, form thread-like micelles. Simulations at 
different surfactant concentrations indicate the formation of various structures, suggest- 
ing an alternative explanation for the unexpected viscosity behavior of gemini surfactants. 

I t  is well known that surfactant molecules, 
which contain a hydrophobic chain and a 
hydrophilic head group, can form a variety of 
aggregates with properties different from 
those of the unassembled molecules. Indeed, 
spherical micelles, rod-like micelles, bilayers, 
reverse micelles, and vesicles have all been 
observed. This polymorphism forms the basis 
of many biochemical processes and is used in 
many industrial and household applications. 
A detailed understanding of surfactant self- 
assembly is therefore important in processes 
ranging from the transport of molecules 
through a cell membrane to the removal of 
stains in a washing machine (1).  

In 1974, a class of surfactants was synthe- 
sized; these surfactants have two hydropho- 
bic chains and two hydrophilic head groups 
connected with a spacer (2). These surfac- 
tants, which were later termed gemini (3) or 
dimeric surfactants (4), have unusual char- 
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acteristics. such as a verv low critical micelle 
concentraiion and a high efficiency in re- 
ducing the oil-water interfacial tension in " 

comparison with conventional single-chain 
surfactants. These properties suggest that 
gemini may be excellent surfactants for soil 
cleanup and enhanced oil recovery; gemini 
are also possible candidates for the next gen- 
eration of surfactants (5). 

In a mixture of water and single-chain 
surfactants, the system tries to minimize its 
free energy by forming micelles in which the 
hydrophobic chains are brought together to 
minimize the contact with water. The hv- 
drophilic head groups are kept near the wa- 
ter and awav from each other as a result of 
electrostatic repulsions. In a gemini surfac- 
tant the two head groups are chemically 
linked by a hydrophobic spacer; as a conse- 
quence, a compromise has to be found for 
the location of the spacer depending on its 
length and flexibility and on the degree of 
repulsion between the two similarly charged 
head groups. For example, when the spacer 
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38000, 1030 BN Amsterdam, Netherlands. 
R. Zana, lnstitut Charles Sadron, Centre National de la between two charged head groupsf the 
Recherche Scientifique, 6 rue Boussingault, 67083 spacer will be fully extended to minimize the 
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