
described (21, except that cells were washed with 
H,O Instead of phosphate-buffered saline (PBS) [ I  0 
mM sodum phosphate (pH 7.4) and 150 mM NaCI] 
before lys!s, and !mmunoprec!p!tates were washed 
w~th PBS containing 0.1 % NP-40. lmmunoprecp~ta- 
t~on was done with 25 p1 of ether prote~n A-Sepha- 
rose coupled (29) to antbodies to HA (23) or proten 
G-Sepharose coupled (29) to antbodes to Py (75). 

31. Polyclona serum to pH085 was derived from rab- 
bits immunized with purified glutathione-S-trans- 
ferase (GST)-PH085 protein. The plasmd produc- 
n g  GST-PH085 conssts of pH085 DNA codng for 
amino ac~ds 4 to 306 (27) cloned nto pGB-2T 
(Pharmacia). Antbodes to pH085 were affinity-pu- 
rified from serum w~th a GST-PH085 column made 
by coupl~ng the purified protein to AffiGel-10 (Bio- 
Rad). 

32. To purify Py,-PH081, we grew 4 liters of the stran 
Y57 pho87A carrying the GPD-Py,-pH081 expres- 
sion vector (9) to a value ofA,,, of -0.9 in synthetc 
med~um containing a high concentratlon of phos- 
phate. Cells were harvested and resuspended in 50 
m of ce-cold Py, buffer [20 mM trs CI (pH 8.01, 100 
mM NaCI, 10% glycerol, 1 mM EGTA, 1 mM MgCI,, 
1 mM d~thiothre~tol (DTT), 1 mM PMSF, 2 mM ben- 
zamdine-HCI, 80 mM P-glycerophosphate, 10 mM 
NaF, and 10 nM calyculin A (LC Laboratories, 
Woburn, MA)]. All subsequent steps except the elu- 
t~on were done at 4°C. Acid-washed glass beads 
were added, and the cells were ysed in a bead 
beater (Bospec Products, Bartesvile, OK) by beat- 
n g  for seven 30-s pulses with I m n  interludes on 
Ice. Beads were peleted by spnning the lysate for 5 
mln at 2000 rpm in a SorvaI RC-3B rotor. Debris was 
removed by spnning the supernatant In a Beckman 
Ti70 rotor for 90 min at 60,000 rpm. The supernatant 
contaned -40 mg of proten in -40 m .  N-Octyglu- 
coside (Boehr~nger Mannhe~m) was added to the 
supernatant to a final concentratlon of 0.1 %, and 
PMSF was added to a fna  concentraton of 1 mM; 
the solution was spun again for 10 min In an SS34 
rotor at 10,000 rpm. The supernatant was combned 
w~th 750 p of a 1 .1 slurry of proten G-Sepharose 
coupled (29) to antbodies to Py (75) and mixed on a 
rotating wheel for 60 mn.  The resn was washed 
twice w~th 15 ml of Py,-buffer containing 0.1 % N- 
octylglucos~de, then twice with 15 ml of Py,-buffer 
containng 0.5% NP-40 and 1 mM DTT. Finally, the 
resin was washed once w~th 10 ml of PBS with 0.1 % 
N-octyglucos~de and then eluted by Incubation for 
10 min at room temperature w~th 250 bl of PBS 
contanng 0.1 % N-octylglucoside and 100 pg/m Py 
peptde (EYMPME) (24). The eluted proteln was ap- 
prox~mately 10 to 20 k g  of highly purlfled Py,- 
PH081. 

33. Unless noted, all strans are sogenic derivat~ves of 
Y57 (MATa ura3-52 trp7-A63 leu2 hs3-67 prb7- 
7722pep4-3prc7-407), whch is protease-defcient 
but wild-type with respect to the PHO genes (2) 
D~sruption strains were constructed by one-step 
gene replacement technques [R. Rothstein; Meth- 
ods Enzymol. 194, 281 (1 991)l. 

34. Five-milliliter cultures of either Y57 pho87A or Y57 
pho806 harbor~ng the pACHA,80 vector (3) were 
grown overnight to saturation in synthetic medum 
lackng uracl but w~th a h~gh phosphate concentra- 
tion. The cells wet-e ha~vested, resuspended in an 
equal volume of H,O, and then nocuated into 100 
ml of selective medum that had been depleted of 
inorganic phosphate [K. F. O'ConneI and R. E. Bak- 
er, Genetics 132, 63 (1 992)] and supplemented w~th 
either KH,PO:, (1.5 mg/ml, high phosphate concen- 
tration) or KC (1.5 mg/ml, low phosphate concen- 
tration). These cultures were grown for approximate- 
ly 15 hours to a value of A,,, of 0.5 to 1 .O. Liquid 
whole-cell phosphatase assays were performed (22) 
to compare the levels of acd-phosphatase actvlty in 
these cultures. The relat~ve amounts of such activity 
normalzed to A,,, were pACHA380/pho80A (low 
phosphate concentraton), 105; pACHA380/pho80A 
(hlgh phosphate concentratlon), 31; pACHA380/ 
pho87A (low phosphate concentration), 7, and 
pACHA380/pho87A (high phosphate concentra- 
tion), 17. We believe that the relatively modest 
Induction that we observed n low phosphate con- 
centrations in thepho80A stra~n carryng the com- 

plementing pACHA380 plasmd is due at least in 
part to the presence of the pH03  constitutive acid 
phosphatase gene [W. Bajwa et a/., Nucleic Acids 
Res. 12, 7721 (1 984)]. Lysates were prepareci 
from these cultures (30) and processed as de- 
scrbed above. 

35. Alter transfer to nitrocellulose, the blot was probed 
wlth ether affnity-purified antibodies to pH081 (76) 
or affnity-purified antibod~es to PH085 (37) in TBST 
[ I 0  mM tr~s-CI (pH 8.01, 150 mM NaCI, 0.05% 
Tween-20, and 0.25 mM EDTA] containing 3% non- 
fat milk. Peroxidase coupled to donkey antbody to 
rabb~t immunoglobul~n G (Amersham) was used as 
the secondary antibody. 

36. After immunoprecipitation (30) and a k~nase assay 
(2) were done, the beads were sedimented for 2 min 
In a m~crofuge, and 20 bl of the supernatant was 
transferred to a second mmunopreclpltate. This 
mxture was then Incubated for an additional 5 mln at 
room temperature before the reactions were 
stopped with SDS sample buffer. 

37. Silver-stalned SDS-polyacrylam~de gels of HA- 
pH080 (2) mmunoprecipitation react~ons done n 
parallel indcated that each reaction contained ap- 
proximately the same amount of both HA-pH080 
and PH085 (72). Ths gel also indcated that pH081 
1s present In the HA-pH081 immunoprecipitat~on 
and in the HA-pH080 mmunoprec~p~tations from 
strans overexpresslng pH081 

38. HA-pH081 consists of amno acids 36 to 11 79 of 
pH081 preceded by a single copy of the HAeptope 

(23) The NH,-termna sequence of the construct 
reads MGYPYDVPDYAEGRHTP-pH081 (24). The 
expression of ths construct 1s under the control of 
the GPD promoter on a CEN-ARS plasm~d (25). 

39. HA-pH080 was immunoprec~pitated (2) from a 
whole-cell extract [M. Woontner et a/., Mol. Cell Biol. 
11, 4555 (1 991)] made from a pho4Apho806 stran 
overexpressng HA-pH080 or from the same cells 
lacking the overexpressed HA-pH080 The mmu- 
noprecip~tates were washed with kinase buffer [20 
mM tr~s CI (pH 7.5) and 10 mM MgCl,] and incubated 
for 10 m n  at room temperature w~th e~ther pur~fied 
pH081 ankyrin repeats (281, equ~valent fract~ons 
from bacteria not expressing the pH081 ankyrin re- 
peats, or pur~fied Py,-PHO81 (32). A kinase assay 
was then done with pH04 as the substrate (2). 
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and M. Lenburg for comments on the manuscrpt; D. 
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Interaction of the Protein Kinase 
Raf-I with 14-3-3 Proteins 

Haian Fu,*-1 Kai Xia,Wavid C. Pallas-1, Can Cui, Karen Conroy, 
Radha P. Narsimhan, Harvey Mamon, R. John Collier, 

Thomas M. Roberts$ 

Members of a family of highly conserved proteins, termed 14-3-3 proteins, were found 
by several experimental approaches to associate with Raf-I, a central component of a 
key signal transduction pathway. Optimal complex formation required the amino-terminal 
regulatory domain of Raf-I. The association of 14-3-3 proteins and Raf-1 was not sub- 
stantially affected by the activation state of Raf. 

Raf-1, a mitogen-stimulated serine-threo- 
nine protein kinase, functions in the con- 
trol of cell growth, transformation, and dif- 
ferentiation ( 1  ). Binding of ligands to ty- 
rosine kinase receptors at the cell surface 
leads to an increase in the amount of the 
active [guanosine triphosphate (GTP)- 
bound] form of Ras (2) .  Activated Ras in- 
teracts directly with the NH,-terminal reg- 
ulatory domain of Raf-1 ( 3 ) ,  resulting in the 
recruitment of Raf-1 to the plasma mem- 
brane ( 4 , 5 ) .  There, Raf-1 is activated by an 

unknown mechanism that is independent 
of Ras. Because Raf-1 exists as a large (300- 
to 500-kD) complex (5, 6) ,  identification 
and analysis of proteins that interact with 
Raf-1 are crucial for understanding how it is 
activated in the plasma membrane. 

To  search for proteins that directly par- 
ticipate in Raf function, we immunoprecipi- 
tated Raf-1 from 35S-methionine-labeled 
NIH 3T3 cells stably expressing human 
Raf-1 in amounts about five times greater 
than the amount of endogenous Raf-1. 
When Raf immune comvlexes were ana- 
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Fig. 1. Character~zation of the 27- and 29-kD Anti-Raf Preimmune 
Raf-assoc~ated proteins. (A and 8) To examine vw wmmm 

C D 

Raf-associated proteins in mammalian cells, ly- 
sates of 35S-labeled cells overexpressing c-Raf 
(25) were immunoprecipitated with (A) rabbit an- I 

tiserum to Raf (26) or (B) preimmune serum from 
the same rabbit and the immunoprecipitates ana- 
lyzed on 2D gels (27). The position and size (in *- b-  - 
kilodaltons) of the major Raf-associated proteins c 
are indicated. The 50- and 90-kD proteins have 
been described previously (6). The 27- and 29-kD 
proteins migrate in positions corresponding to 
those of 14-3-3 proteins. Raf-1 migrates n a 50 

!;:IE , 
O 1.5 

streak located in the right half of our two-dimen- 
sional gels, which is not shown. (C and D) Raf 1.0 
immunoprecipitates from cells overexpresslng c- .- 

al 

Raf were probed for the presence of 14-3-3 pro- 0.5 
n 

teins. lmmunoprecipitates were prepared with .- - 4 2 Y  
L 

4 
rabbit antiserum to Raf (C) or with preimmune c; 0.0 

4 2 7  4 C] 
2 "6 

a 
: z 

serum (D), analyzed on two-dimensional gels, and 5 2 
immunoblotted with rabbit polyclonal antiserum .E < .E 3 
specific for a peptide found in several subspecies P e! n 

E 
A- - of the 14-3-3 proteins (8). Arrowheads in (C) and NIH 3T3 cells c-Raf cells 

(D) indicate the position of migration of an immu- 
noreactive spot corresponding to a protein of 27 kD. (E) Raf immunocom- extensively washed were tested for their ability to activate the ADP-ribosylat- 
plexes (2.5 )11) prepared from NIH 3T3 cells or cells overexpressing c-Raf and ing activlty of exoenzyme S from P. aeruginosa (13). 

virus middle tumor antigen (MT)-associ- 
ated proteins (8). Consistent with this as- 
signment, the 27-kD form in Raf immune 
complexes immunoblotted with a poly- 
clonal antibody that recognizes several 27- 
kD isoforms of 14-3-3 protein (8) (Fig. 1, C 
and D). The 14-3-3 proteins are a family of 
highly conserved dimeric molecules. In 
yeast, 14-3-3 proteins have been implicated 
in cell cycle control (9). A variety of bio- 
chemical activities have been reported for 
members of this protein family (I  O), includ- 
ing one that provides a sensitive assay for 
these proteins. 14-3-3 proteins serve as 
obligatory activators of Psewlomonas aerugi- 
nosa exoenzyme S, an adenosine 5'-diphos- 
phate (ADP)-ribosyltransferase with a sub- 
strate preference for Ras and selected small 
GTP-binding proteins (1 1 ). This property, 
denoted factor activating exoenzyme S 
(FAS) activity, is common to 14-3-3 pro- 
teins from various sources (1 2). When we 
examined Raf-1 immunoprecipitates from 
normal NIH 3T3 cells and from the NIH 
3T3 cells overproducing Raf-1, FAS activ- 
ity was present in Raf-1 immunoprecipitates 
from both cell types but was three to five 
times greater in the Raf-overproducing line 
(Fig. 1E) (13). 

To further examine the interaction of 
Raf-1 with 14-3-3 proteins, we turned to 
the baculovirus expression system (14, 15). 
The earlier discovery that polyomavirus 
MT interacts with insect 14-3-3 proteins 
suggested that mammalian Raf-1 might also 
interact with the insect proteins. Insect 
cells were infected with baculoviruses ex- 
pressing mammalian Raf-1 or various trun- 
cated forms of Raf-1. Raf immunoprecipi- 
tates from the Raf-1-expressing cells, but 
not control cells, contained large amounts 

Regulatory domain Catalytic domain 
I- 

Rat-1 1 C 

N-GAG fusion--c 

~ o c k t ,  , , , , 
C R l  Fn CR3 

0.0 0.5 1.0 1.5 2.0 2.5 0- 
I 

648 
ADP-ribose incorporated (pmol) Raf structure (amino acids) 

Fig. 2. Association of FAS activity with Raf mutants. Anti-Raf imrnunoprecipitates were prepared from 
wild-type (mock), or recombinant baculovirus-infected insect cells expressing Raf-1 , Raf-20T, Raf-22W, 
and v-Raf as described (14, 15). lmmunoprecipitates (1.25 PI) were assayed for ability to activate the 
ADP-ribosyltransferase activity of exoenzyme S (13). Normalization was done by protein immunoblotting 
with an antibody that recognizes an epitope shared by all Raf-1 alleles tested. The right panel indicates the 
corresponding structure of the Raf proteins expressed in insect cells. 

of FAS activity, indicating that Raf-1 is 
associated with 14-3-3 proteins in insect 
cells (Fig. 2) (16). Structural features of 
Raf-1 required for the interaction with 14- 
3-3 moteins were examined. Raf-1. a 648- 
amino acid polypeptide, consists of an NH2- 
terminal regulatory domain and a COOH- 
terminal kinase domain. The NH,-terminal 
domain is further subdivided into conserved 
region 1 (CRl), a region that contains a 
zinc finger motif and a Ras binding region, 
and conserved region 2 (CR2), a serine-rich 
region. The deletion mutant Raf-2OT lacks 
CR1, whereas Raf-22W lacks the entire 
regulatory NH,-terminal domain ( 17). Raf- 
20T immunoprecipitates contained 15 to 
20% of the FAS activity from cells express- 
ing wild-type Raf-1, whereas Raf-22W im- 
munecomplexes contained only -8 to 10% 
of the activity associated with wild-type 
Raf-1. v-Raf. a virus-eenerated mutant in - 
which the NH,-terminal regulatory region 
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is replaced by viral sequences, showed about 
the same amount of 14-3-3 binding activity 
as Raf-22W. In the above experiments, the 
amount of 14-3-3 proteins measured by 
blotting paralleled the amount of FAS ac- 
tivity in the various Raf immunoprecipi- 
tates (18). In a reciprocal experiment, an 
immobilized full-length 14-3-3 </glutathi- 
one-S-transferase (GST) fusion protein 
(but not GST alone) was found to bind 
Raf-1 from baculovirus-infected insect cells. 
The truncated forms of Raf (Raf-22W, Raf- 
20T, and v-Raf) in cell lysates also bound to 
GST-14-3-3 5, albeit with decreased effi- 
ciency ( 18). 

The influence of the activation state of 
Raf-1 on the binding of 14-3-3 proteins was 
also tested. In the baculovirus system, two 
signals must synergize for the efficient acti- 
vation of Raf-1 autophosphorylation and 
substrate-directed kinase activities. One sig- 
nal is supplied by Ras and presumably serves 

127 



to localize Raf-1 to the membrane. The 
second signal can be supplied by pp60c~STC 
and is independent of Ras (14, 19). Either 
signal alone gives a modest activation of 
Raf-1. The  association of 14-3-3 proteins 
with Raf-1 in various activation states was 
measured by monitoring of the amount of 
FAS activity in Raf-1 immunoprecipitates 
from different recombinant baculoviruses as 
indicated in Fig. 3. Similar amounts of FAS 
activity were detected in Raf-1 immunopre- 
cipitates from cells infected with only Raf-1 
or with the catalytically inactive mutant 
301 protein or from cells infected with both 
Raf and Ras. Slightly larger amounts of 
Raf-associated FAS activity were consis- 
tently detected in cells infected with Raf, 
Ras, and v-Src, in which Raf-1 was activat- 
ed 10- to 100-fold. No FAS activity was 
immunoprecipitated with antisera to Src or 
Ras. 

We  tested the ability of purified 14-3-3 
proteins to modulate the kinase activity of 
Raf-1. Raf-1 immunoprecipitates from Sf9 
cells were tested for kinase activity in the 
presence or absence of 14-3-3 1; protein 
purified from Escherichia coli (Table 1)  (20). 
Five preparations of 14-3-3 5 were tested. 
Addition of one preparation of 14-3-3 1; 
increased the autophosphorylation and 
MAP kinase/ERK- kinase-1 (MEK-1) ki- 
nase activity of Raf-1 two- to threefold; 
however, four other preparations had no  
stimulatory activity. Addition of 14-3-3 1; 
had the same effect on Raf-1 isolated from 
insect cells co-infected with Raf-1 and Ras 
viruses. All batches of 14-3-3 5 had compa- 
rable FAS activity (Table 1). We  have no 

Fig. 3. Effect of the activation state of Raf-1 on 
the binding of 14-3-3 protein. Anti-Raf immuno- 
precipitates were prepared from Sf9 cells singly 
infected with recombinant baculoviruses en- 
coding Raf-1 alone or kinase-inactive Raf-1 mu- 
tant 301, or cells doubly infected with baculovi- 
ruses encoding Raf-1 and Ras, or cells triply 
infected with all three baculoviruses encoding 
Raf-I, Ras, and pp60V-SrC Extensively washed 
immunoprecipitates were tested for their ability 
to activate exoenzyme S (13). Data were nor- 
malized on the basis of the amount of Raf re- 
vealed by protein immunoblotting. 

explanation for the variation in 14-3-3 pro- 
tein preparations. Trivial explanations for 
the activation by the first preparation, such 
as the possibility of a contaminating MEK 
kinase activity or buffer effects, have been 
ruled out. 

Taken together, our results indicate that 
14-3-3 proteins interact with Raf at multi- 
ple sites and suggest that the primary inter- 
action sites are located in the NH,-terminal 
domain. The  CR1 region of Raf-1 contains 
zinc finger motifs as do two other proteins 
known to bind 14-3-3-polyomavirus MT 
and c-Bcr (21). Furthermore, the CR2 do- 
main of Raf-1 also has similarity to the 
serine-threonine-rich region in the first 
exon of c-Bcr (21). However, the kinase 
domain of Raf-1 alone clearly has some 
14-3-3-binding ability. This binding pat- 
tern distinguishes 14-3-3 proteins from 
hsp90 and p50, which bind strongly to the 
COOH-terminal catalytic domain of the 
Raf-1 protein (22). Further work is needed 
to determine the precise structural features 
required for the interaction. For full-length 
Raf-1, the amount of FAS activity in Raf-1 
immunoprecipitates was roughly propor- 
tional to the amount of Raf-1 expression in 
the cell. The 14-3-3 proteins do not inter- 
act with all protein kinases. No interaction 
was detected with protein kinase C (PKC) 
a (18), even though PKCs are structurally 
similar to Raf-1 and have been reported to 
be regulated in vitro by 14-3-3 proteins 
(10). 

It is premature at this point to propose a 
precise role of the 14-3-3 proteins in the 
Ras-Raf signaling pathway. Our data suggest 
that 14-3-3 5 does not substantially activate 
Raf-1 in vitro but do not rule out the pos- 
sibility that another isoform of 14-3-3 pro- 
tein might activate (or inhibit) Raf-1 or 
that 14-3-3 protein must be modified in 
some manner in which it is not modified in 
E .  coli. Interpretation of either an activa- 

Table 1. Effect of 14-3-3 1, on Raf-1 kinase act~v- 
ity. Five preparations were purified individually as 
described (1 1 ). Preparation 4 was further purified 
by a mono-Q ion exchange column on fast protein 
liquid chromatography. Preparation 5 contains a 
hexahistidine tag. Raf activation was calculated by 
phosphorylation amounts of MEK-1 in the pres- 
ence or absence of 14-3-3 proteins normalized for 
Raf concentration. FAS activity was assayed ba- 
sically as described (13), except that the reactions 
were incubated for 30 min and the final concen- 
tration of FAS used was 0.25 yg/ml. 

Preparation Raf activation FAS actlvity 
of 14-3-3 (fold) (~mo l )  

tion or inhibition by 14-3-3 protein would 
not be straightforward, because the interac- 
tion between 14-3-3 protein and Raf-1 ap- 
pears to be constitutive. 14-3-3 protein 
bound to both unactivated Raf-1 (from sin- 
gle infection) and a catalytically inactive 
mutant of Raf-1 (Fig. 3 ) .  If Raf-1 is regulat- 
ed by 14-3-3 proteins in cells, we are cur- 
rently at a loss to suggest a mechanism to 
turn a constitutive interaction into a regu- 
lated activation. Alternatively, it is possible 
that 14-3-3 protein may function down- 
stream of Raf-1 . 

The ADP-ribosylation cofactor activity 
of 14-3-3 proteins is conserved in evolution; 
that is, yeast 14-3-3 substitutes for mamma- 
lian 14-3-3 in ADP-ribosylation catalyzed 
by exoenzyme S (12). The ADP-ribosyla- 
tion cofactor activity we are measuring may 
well be a surrogate for an important physi- 
ological role of the 14-3-3 proteins. A t  the 
moment, we would only remark that, by 
means of its association with Raf-1, 14-3-3 
protein is complexed in vivo with a protein 
(Raf-1) immediately proximal to its pre- 
ferred target of ADP-ribosylation by exoen- 
zyme S in vitro (Ras). 
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Association of the Protein Kinases C-Bc~ and phosphotyrosine-independent manners. TO- 

Bcr-Abl with Proteins of the 14-3-3 Family 
gether, these interactions may contribute to 
the activation of the tyrosine kinase and 

Gary W. Reuther, Haian Fu,* Larry D. Cripe,? R. John Collier, 
Ann Marie Pendergast$ 

In this study, a protein that interacts with sequences encoded by the first exon of the 
protein kinase Bcr was cloned. The Bcr-associated protein 1 (Bap-1) is a member of the 
14-3-3 family of proteins. Bap-1 interacts with full-length c-Bcr and with the chimeric 
Bcr-Abl tyrosine kinase of Philadelphia chromosome (Phi)-positive human leukemias. 
Bap-1 is a substrate for the Bcr serine-threonine kinase and is also phosphorylated on 
tyrosine by Bcr-Abl but not by c-Abl. Bap-1 may function in the regulation of c-Bcr and 
may contribute to the transforming activity of Bcr-Abl in vivo. 14-3-3 proteins are essential 
for cell proliferation and have a role in determining the timing of mitosis in yeast. Through 
direct binding to sequences present in Bcr and in other proteins implicated in signaling, 
the mammalian 14-3-3 proteins may link specific signaling protein components to mi- 
togenic and cell-cycle control pathways. 

T h e  product of the bcr gene is a 160-kD 
protein with multiple functional and struc- 
tural domains. Among the functional do- 
mains ascribed to c-Bcr are a serine-threo- 
nine kinase encoded by the NH2-terminal 
first exon sequences (1) and a COOH- 
terminal domain-encoded guanosine triphos- 
phatase (GTPase)-activating function for 
the Rac GTP-binding protein (2). Several 
structural domains have been identified in 
c-Bcr, including an oligomerization domain 
(3), a region that binds Src homology 2 
(SH2) domains in a phosphotyrosine-inde- 
pendent manner (4), a region of sequence 
similarity to guanine nucleotide exchange 
factors for the Rho family of GTP-binding 
proteins ( 5 ) ,  a calcium-dependent lipid 
binding (Calb) domain, and a pleckstrin 
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homology domain (6). Though the pres- 
ence of these distinct biochemical and 
structural properties in c-Bcr suggests that 
this protein may function as a point of 
cross-talk among multiple intracellular sig- 
naling pathways, little is known about its 
bioloeical mechanism of action. 

~ c e  bcr gene was first discovered be- 
cause of its involvement in Phl-positive 
leukemias. Phl is produced by a reciprocal 
translocation event between chromosomes 
9 and 22. The translocation fuses the bcr 
gene upstream of the second exon of the 
c-abl proto-oncogene (7). Two alternative 
Bcr-Abl chimeric proteins are produced, 
P210 and P185. which are associated with 
chronic myelogenous and acute lymphocyt- 
ic leukemias, respectively (8). Sequences 
within the first exon of Bcr are essential for 
the transforming activity of Bcr-Abl (9). A 
tyrosine (Tyr177) within the Bcr first exon 
becomes phosphorylated in the activated 
Bcr-Abl oncoproteins and serves as a bind- 
ing site for the SH2 domain of the Grb2 
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the transforming activities of Abl in the 
Bcr-Abl chimera (4, 10). 

To understand the mechanism or mech- 
anisms whereby the first exon of Bcr acti- 
vates the transforming activity of Abl in the 
Bcr-Abl chimera and to gain insight into 
the normal functions of c-Bcr, we sought to 
identify cellular proteins that bind directly 
to this region of Bcr in a phosphotyrosine- 
inde~endent manner. A XEXlox mouse em- 
bryo library was screened with amino acid 
sequences encoded by the first exon of Bcr 
(amino acids 1 to 413). The Bcr sequences 
were fused downstream of g1utathione-S- 
transferase (GST) and the GST-Bcr (1- 
413) fusion was then cloned into a baculo- 
virus vector for expression in insect cells. 
Sf9 insect cells were infected with the pu- 
rified recombinant GST-Bcr (1-413 1 bac- 

\ . ,  

ulovirus. After cell lysis, the fusion protein 
was purified on glutathione Sepharose 
beads. The GST-Bcr (1-413) protein was 
labeled with 32P by its intrinsic kinase ac- 
tivity (1 ). A single phosphorylated protein 
band was detected after eel electro~horesis 
and autoradiography. TCe phosphorylated 
protein was recognized by antibodies to Bcr. 
The labeled GST-Bcr protein was used as a 
probe to screen a complementary DNA 
(cDNA) library from a 16-day mouse em- 
bryo (1 1). Seven independent phage clones 
were isolated. There were two sets of iden- 
tical clones, of five and two clones, respec- 
tively, that overlapped in sequence. North- 
ern (RNA) blot analysis revealed the pres- 
ence of two closely migrating transcripts of 
about 1.9 and 2.2 kb in all murine and 
human tissues examined 112). Analvsis of 
the DNA sequence correipdnding ;o the' 
longest insert (1.9 kb) revealed that the 
cDNA encoded a member of a large family 
of proteins. The protein was named Bcr- 
associated protein 1 (Bap-1) and is identical 
in sequence (except for a,single aspartic 
acid to glutamic acid substitution) to a 
member of the 14-3-3 family of proteins 
isolated from human T cells (13). The 14- 
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