
Horvath and RQbai also provide a dra- 
matic dve-based visual demonstration that 
the miscibility of fluorous and nonfluorous 
phases can depend on temperature. Hence, 
reactions could be conducted under homo- 
geneous conditions at elevated tempera- 
tures and then cooled to effect product 
separation. Other engineering advantages 
that could be associated with FBS chemis- 
try are easily imagined. For example, a reac- 
tion involving a fluorinated catalyst might 
be conducted in a single organic phase, and 
a fluorous phase loop in the product stream 
could be used for catalyst recovery. Alter- 
natively, in an environmental application, 
toxic wastes could be extracted from mod- 
uct streams by immobilized fluorous bind- 
ing agents. It should also be kept in mind 
that interfacial reactions may be dominant 
in some FBS chemistry. As the field devel- 
ops, there will be a particular need for data 
on this point and the effect of solvent and 
ponytail structure on phase properties, solu- 
bilities, and related phenomena. 

The above FBS hvdroformvlation can 
also be analyzed in the context of other 
rhodium-catalyzed reactions involving phos- 
phines designed to confer special phase 
properties. First, sulfonated aryl phosphines 
have been shown to similarly immobilize 
rhodium catalysts in the aqueous phases of 
organic-aqueous biphase systems. Com- 
mercial hydroformylation plants making 
use of this technology have been in opera- 
tion since 1984 (5). However, rates are 
constrained bv the limited solubilities of 
the reactants in the aqueous phase. Second, 
rhodium has also been ligated to phos- 
phines containing poly(a1kene)oxide chains, 
CCHRCH,O), (6). Such oligomeric units 
often give rise to water solubilities that are 
inversely dependent on temperature. Ac- 
cordingly, the resulting hydrogenation cat- 
alyst shows an abrupt but reversible cessa- 
tion of activity upon heating. This prop- 
erty, which has been correlated to a phase 
separation or precipitation of the catalyst, 
could have practical application as a means 
of controlling exotherms. 

The protocol developed by Horvgth and 
RQbai is remarkable in its conce~tual el- 
egance and insight. Its timeliness is en- 
hanced by several parallel developments. 
For example, there have been significant 
recent advances in methodology for per- 
fluorinating sizable, functionalized organic 
compounds that lack existing fluorine (7). 
There is also a rapidly growing body of data 
on the fundamental properties of metal com- 
plexes with perfluorinated ligands (8, 9). 
Realistically, it does remain t o  be seen 
whether catalysts and reagents with fluorine- 
rich ponytails will simply be this season's 
fashion statement or a lasting addition to 
the chemist's haberdashery or trousseau. 
However, the strategy in this game is even 
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14-3-3: Modulators 
of Signaling Proteins? 

Deborah Morrison 

I n  spite of their unlikely name, the 14-3-3 The evidence that 14-3-3 interacts with 
proteins have been attracting attention proto-oncogene and oncogene products is 
recently. These molecules are highly con- compelling. 14-3-3 associates with Raf-1 in 
served and are found in a broad range of the veast two-hvbrid interaction svstem (7, . . 
organisms and tissues. At least seven &am- 8 )  ahd in binding assays in vitro (4) and is 
malian isoforms of 14-3-3 have been identi- present in immunoprecipitates of Raf-1 
fied, and multiple isoforms are present in expressed in insect cells and from mamma- 
most cells ( 1  ). 14-3-3 proteins were first lian cells (4,8). By protein sequencing anal- 
identified by Moore and Perez as a series of ysis, Pallas and collaborators identified 14-3- 
very abundant 27- to 30-kilodalton (kD) 3 in immunoprecipitates of polyomavirus 
acidic proteins in brain tissue (2). MT (6). Reuther and co-workers 
(The name reflects these investiga- PI detected the interaction of Bcr and 
tors' nomenclature.) Although Bcr-Abl with 14-3-3 by screening 
the 14-3-3 family exhibits a mammalian complemen- 

'_sl.I MEK 
Bcr 3cr-A 

@ Grb2 * Src family tyrosine kinases 
p85 IPI-3 kinase 

hsp9O and hsp50 
Src family tyrosine kinases 

Associates of Raf-1, Bcr, Bcr-Abl, and polyomavirus MT. 14-3-3 IS only one of many proteins that 
Interact w~th these proto-oncogene and oncogene products. 

a bewildering array of biological activities 
( I  ), many recent findings, particularly in fis- 
sion yeast, point to the participation of 
these proteins in cell cycle control (3). In 
this issue (4 ,5 )  and in three previous reports 
(6-8) in Science, the 14-3-3 family acquires 
another feature of interest: Its members 
associate with the products of proto-onco- 
genes and oncogenes-in particular, Raf-1, 
Bcr-Abl, and the polyomavirus middle 
tumor antigen (MT)-suggesting that 14- 
3-3 proteins participate in cell transforma- 
tion and mitogenic signaling pathways. 

tary DNA expression library with a puri- 
fied fragment of Bcr and showed that these 
proteins associated in vitro and coimmu- 
noprecipitated from mammalian cells (5). 
These disparate techniques and approaches 
provide convincing evidence that this fam- 
ily of proteins indeed associates with proto- 
oncogene and oncogene products. 

14-3-3 associates with Raf-1 at multiple 
sites, with the primary interaction sites lo- 
cated in the amino-terminal regulatory do- 
main (4, 8). The association of 14-3-3 with 
Raf-1, however, does not alter or interfere 
with the interaction of Raf-1 with Ras (7, 

The author is in the Molecular Mechanisms of Car- 8 ) .  which also occurs in this domain (9). . . 
cinogenesis Laboratory, Nat~onal Cancer Institute- 
Frederick Cancer Research Development Center, ''' ''' and Bcr-Ablv the 14-3-3 interaction 
Frederick, MD 21 702-1201, USA. site is located in the sequences encoded by 
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the first exon of BCR ( 5 ) .  Cystelne- and 
serine-rich regions are common elements-
present in these regions of Raf-1, Bcr, and 
polyomavirus M T  and may be determinants 
for 14-3-3 binding, although other regions 
of these proteins also contribute. 

In contrast to the definitive association 
data, the functional effect of 14-3-3 asso-
ciation is still ambiguous. The most appeal-
ing suggestion is that 14-3-3 1s the long-
sought direct activator of the Raf- 1 kinase. 
In mammalian cells, treatment with growth 
factors induces the association of Raf-1 
with Ras (10); this interaction serves to 
translocate Raf-1 to the membrane, where 
it becomes activated (11). T h e  exact 
mechanism by which Raf-1 is activated at 
the membrane is unclear. Could 14-3-3 be 
Dart of this mechanism? 

Two ,recent reports suggest that it may 
be, by demonstrating that 14-3-3 modulates 
Raf-1 activity in yeast (7,  8) .  Using a ge-
netic screen, Irie and co-workers identified 
BMH1, the yeast homolog of 14-3-3, as a 
~ r o t e i nthat when overex~ressedenhanced 
the function of mammalian Raf-1 in bud-
ding veast, and further showed that BMHl- ,  . 
was required for Raf-1 to be activated by 
Ras in this system (7). Freed and colleagues 
also found that overexpression of mamma-
lian 14-3-3 proteins in yeast stimulated the 
biological activity of mammalian Raf-1 
and observed that mammalian Raf-1 immu-
noprecipitated from yeast strains over-
expressing 14-3-3 had three- to fourfold 
more enzvmatic activitv than Raf-1 from 
yeast straks lacking 14-3-3 expression (8). 
In addition, Fantl and colleagues will re-
port next week (12)  that expression of 14-
3-3 in Xenobus oocvtes induces meiotic 
maturation a i d  that '  Raf immunoprecipi-
tated from these oocvtes had increased ki-
nase activity. These data would suggest that 
14-3-3 does alter Raf-1 function, but is 14-
3-3 directly regulating Raf-1 enzymatic ac-
tivitv? Irie and co-workers amroached this 

A A 

quesiion by adding recombinant 14-3-3 in 
vitro to mammalian Raf-1 isolated from 
yeast. T h e  14-3-3 protein increased Raf-1 
activity three- to fourfold, although this as-
say did not measure Raf-1 catalytic activity 
directly (7).When Fu and collaborators did 
measure catalytic activity direc'tly, they 
found that one preparation of purified 14-
3-3 enhanced the activity of baculovirus-
expressed Raf-l' two- to threefold, while 
four other preparations had n o  stimulatory 
activity (4). Interpreting the significance of 
these findings is complicated by the obser-
vation that in vivo 14-3-3 always associates 
with Raf-1 regardless of the subcellular lo-" 
cation or activation state of Raf-1 or 
whether Raf-1 is bound to Ras (4, 8). It is 
unclear how exogenously added 14-3-3 
could activate Raf-1 that is already associ-
ated with 14-3-3 and how a constitutive in-

teraction could become a regulated ac-
tivational event. Therefore, 14-3-3 binding 
alone cannot be sufficient to activate the 
Raf-1 kinase. Although 14-3-3 may be a 
cofactor involved in the stimulation of Raf-
1 activity, it is difficult to conclude that 14-
3-3 is indeed the direct activator of Raf-1. 

A n  alternative function for 14-3-3 is 
suggested by the constitutive association of 
these highly abundant 14-3-3 proteins with 
oncogene and proto-oncogene products: 
14-3-3 may play a structural role in stabiliz-
ing the activity or conformation of signal-
ing proteins. This function would be simi-
lar to  that proposed for the heat shock 
protein, hsp90, which also binds to Raf-1 
(13). Blnding of hsp90 to steroid and ty-
rosine kinase receptors is thought to stimu-
late or stabilize biologically active confor-
mations of these receptors (14). A struc-
tural role for 14-3-3 could explaln the en-
hancement of Raf-1 activity in yeast strains 
expressing 14-3-3 and in vitro. When  Raf-1 
is overexpressed in yeast where the 
amounts of 14-3-3 (BMHl)  may be limit-
ing, the overexpression of 14-3-3 (or the 
addition of 14-3-3 to yeast-expressed Raf-1 
in vitro) may allow more Raf-1 molecules 
to become functionally competent. 14-3-3 
may thus be required for the conforma-
tional stabilization of the kinase rather 
than for actual stimulation of Raf-1 activ-
ity. 14-3-3 may also regulate protein traf-
ficking, since these proteins share a short 
stretch of sequence homology with the 
annexins. Members of the annexin family 
can act as receptors for activated protein 
kinase C and mediate the translocation of 
protein kinase C from the cytoplasm to the 
membrane (15). 

Another  role for 14-3-3 is suggested by 
the intrinsic adenosine diphosphate (ADP)-
ribosylation cofactor activity of these pro-
teins identified by Fu and co-workers (16). 
Because Ras and other small guanosine 
triphosphate-binding proteins (G proteins) 
can be ADP-ribosylated (17)-and Raf-1, 
Ras, and 14-3-3 may exist in a ternary com-
plex-it is possible that Raf-1-bound 14-3-
3 induces the ADP-ribosylation of Ras. 
However, Ras has not been shown to be 
ADP-ribosylated in vivo, and a n  effect of 
this modification on Ras activity has not 
been reported. 14-3-3 can also serve as a ki-
nase substrate. Reuther and co-workers show 
that 14-3-3 is phosphorylated in vitro by Bcr 
and Bcr-Abl and that it is a substrate for 
these proteins in vivo (5). This work iden-
tifies the 14-3-3 protein Bap-l as the first 
physiological substrate of Bcr. It is not 
known whether 14-3-3 proteins are sub-
strates of other oncogene and proto-onco-
gene products or whether phosphorylation 
modifies the interactions of 14-3-3 with cell-
ular proteins or alters any of its activities. 

Other potential functions of 14-3-3 can 

be envisioned. Because 14-3-3 proteins can 
form dimers in vitro (18), they may form 
bridges that connect proto-oncogene and 
oncogene products with other signaling or 
cytoskeletal proteins. Therefore, the signal-
ing proteins associating with Raf-1, Bcr-
Abl, and polyomavirus M T  might also in-
teract with or be modified by 14-3-3. 

One can only conclude from the avail-
able data that much more has yet to be 
learned about the binding of 14-3-3 with 
.proto-oncogene and oncogene proteins and 
the function of these interactions. Of utmost 
importance are experiments identifying mu-
tants of Raf-1, Bcr-Abl, and polyomavirus 
M T  that cannot interact with 14-3-3. If 14-
3-3 modulates function. mutational analvsis 
should show a correlation between 14-3-3 
association and the biological or biochem-
ical activities of wild-type and mutant ver-
sions of these rotei ins. The fact that there 
are seven identified mammallan 14-3-3 
family members (1, 5), each possibly hav-
ing a distinct specificity for (and ability to 
activate) proto-oncogene and oncogene 
products, will complicate this study, but the 
techniques are available to provide a clear-
er view of these interactions. 
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