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Genetic Dissection of Complex Traits 
Eric S. Lander* and Nicholas J. Schork 

Medical genetics was revolutionized during the 1980s by the application of genetic 
mapping to locate the genes responsible for simple Mendelian diseases. Most diseases 
and traits, however, do not follow simple inheritance patterns. Geneticists have thus 
begun taking up the even greater challenge of the genetic dissection of complex traits. 
Four major approaches have been developed: linkage analysis, allele-sharing methods, 
association studies, and polygenic analysis of experimental crosses. This article synthe- 
sizes the current state of the genetic dissection of complex traits-describing the meth- 
ods, limitations, and recent applications to biological problems. 

H u m a n  genetics has sparked a revolution 
in medical science on  the basis of the 
seemingly improbable notion that one 
can systematically discover the genes 
causing inherited diseases without anv - 
prior biological clue as to how they func- 
tion. The  method of genetic mapping, by 
which one compares the inheritance pat- 
tern of a trait with the inheritance pat- 
terns of chromosomal regions, allows one 
to find where a gene is without knowing 
what it is. The  approach is completely 
generic, being equally applicable to spon- 
giform brain degeneration as to inflamma- 
tory bowel disease. 

To geneticists, this revolution is really 
nothing new. Genetic mapping of trait-caus- 
ing genes to chromosomal locations dates 
back to the work of Sturtevant in 19 13 (1 ). It 
has been a mainstay of experimental geneti- 
cists who study fruit flies, nematode worms, 
yeast, and maize and who developed genetic 
maps containing hundreds of genetic markers 
that made it possible to follow the inheritance 
of any chromosomal region in a controlled 
cross. With the advent of recombinant DNA, 
genetic mapping was carried to its logical 
conclusion with the development of position- 
al cloning-the isolation of a gene solely on 
the basis of its chromosomal location, without 
regard to its biochemical function. Positional 
cloning was invented by Bender and col- 
leagues, who used it to isolate the bithorax 
complex in Drosophila (Z), and it rapidly be- 
came a routine technique in flies and worms. 

Despite its central role in experimental 
organisms, genetic mapping hardly figured in 
the study of humans throughout most of the 
century. There were two reasons: the lack of 
an abundant supply of genetic markers with 
which to study inheritance, and the inability 
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to arrange human crosses to suit experimental 
purposes. The key breakthrough was the rec- 
ognition that naturally occurring DNA se- 
quence variation provided a virtually unlim- 
ited supply of genetic markers-an idea first 
conceived of by Botstein and colleagues for 
yeast crosses (3) and subsequently for human 
families (4). With highly polymorphic genetic 
markers, one could trace inheritance in exist- 
ing human pedigrees as if one had set up the 
crosses in the laboratory. These ideas soon led 
to an explosion of interest in the genetic 
mapping of rare human diseases having simple 
Mendelian inheritance. More than 400 such 
diseases have been genetically mapped in this 
manner, and nearly 40 have been positionally 
cloned (5). 

Human geneticists are now beginning 
to  explore a new genetic frontier, driven 
by an  inconvenient reality: Most traits of 
medical relevance do  not  follow simple 
Mendelian monogenic inheritance. Such 
"complex" traits include susceptibilities 
to  heart disease, hypertension, diabetes, 
cancer, and infection. The  genetic dissec- 
tion of complex traits is attracting many 
investigators with the promise of shed- 
ding light on old problems and is spawn- 
ing a variety of analytical methods. The  
emerging issues turn out to  be relevant 
not  just to  medical genetics, but to  fun- 
damental studies of mammalian develop- 
ment and applied work in agricultural 
improvement. The  field is still at a n  early 
stage, but it is ready to gxplode much as it 
has done in recent years with the analysis 
of simple traits. The  purpose of this article 
is to  synthesize the key challenges and 
methods, to  highlight some enlightening 
examples, and to identify further needs. 

Complex Traits 

The term "complex trait" refers to any phe- 
notype that does not exhibit classic Men- 
delian recessive or dominant inheritance at- 
tributable to a single gene locus. In general, 
complexities arise when the simple correspon- 
dence between genotype and phenotype 

breaks down, either because the same geno- 
type can result in different phenotypes (due to 
the effects of chance, environment, or inter- 
actions with other genes) or different geno- 
types can result in the same phenotype. 

T o  some extent, the category of complex 
traits is all-inclusive. Even the simplest ge- 
netic disease is complex, when looked at 
closelv. Sickle cell anemia is a classic ex- 
ample of a simple Mendelian recessive trait. 
Yet, individuals carrying identical alleles at 
the P-globin locus can show markedly dif- 
ferent clinical courses, ranging from early 
childhood mortality to a virtually unrecog- 
nized condition at age 50 (6). The trait of 
severe sickle cell anemia is thus complex, 
being influenced by multiple genet,ic factors 
including a mapped X-linked locus and an 
inferred autosomal locus that can increase 
fetal hemoglobin amounts and thereby par- 
tially ameliorate the disease (7). 

It is often impossible to find a genetic 
marker that shows perfect cosegregation 
with a complex trait. The reasons for this 
can be ascribed to a few basic problems. 

Incomplete penetrance and phenocopy. 
Some individuals who inherit a predispos- 
ing allele may not manifest the disease (in- 
complete penetrance), whereas others who 
inherit no  predisposing allele may nonethe- 
less get the disease as a result of environ- 
mental or random causes (phenocopy). 
Thus, the genotype at a given locus may 
affect the probability of disease, but not 
fullv determine the outcome. The Den- 
etrance function f ( G ) ,  specifying the prob- 
ability of disease for each genotype G ,  may 
also depend on nongenetic factors such as 
age, sex, environment, and other genes. For 
example, the risk of breast cancer by ages 
40, 55, and 80 is 37%, 66%, and 85% in a 
woman carrying a mutation at the BRCAl 
locus as compared with 0.4%, 3%, and 8% 
in a noncarrier (8). In such cases, genetic 
mapping is hampered by the fact. that a 
predisposing allele may be present in some 
unaffected individuals or absent in some 
affected individuals. 

Genetic (or locus) heterogeneity. Muta- 
tions in any one of several genes may result 
in identical phenotypes, such as when the 
genes are required for a common biochem- 
ical pathway or cellular structure. This pos- 
es no  problem in experimental organisms, 
because geneticists can arrange to work 
with pure-breeding strains and perform 
crosses to assign mutations to complemen- 
tation classes. In contrast, medical geneti- 
cists typically have no  way to know whether 
two patients suffer from the same disease for 
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different genetic reasons, at least until the 
genes are mapped. Examples of genetic het- 
erogeneity in humans include polycystic 
kidney disease (Y), early-onset Alzheimer's 
disease (1 O), maturity-onset diabetes of the 
young (1 I ) ,  hereditary nonpolyposis colon 
cancer (12), ataxia telangiectasia (13), and 
xeroderma pigmentosum ( 14). Retinitis pig- 
mentosa, involving retinal degeneration, 
apparently can result from mutations in any 
of at least 14 different loci (15), and Zell- 
weger syndrome, involving the failure of 
peroxisome biosynthesis, from mutations in 
any of 13 loci (16). Genetic heterogeneity 
hampers genetic mapping, because a chro- 
mosomal region may cosegregate with a dis- 
ease in some families but not in others. 
Genetic heterogeneity should be distin- 
guished from allelic heterogeneity, in which 
there are multiple disease-causing muta- 
tions at a single gene. Allelic heterogeneity 
tends not to interfere with gene mapping. 

Polygenic inheritance. Some traits may re- 
quire the simultaneous presence of muta- 
tions in multiple genes. Polygenic traits may 
be classified as discrete traits. measured bv a 
specific outcome (for example, develdp- 
ment of type I diabetes or death from myo- 
cardial infarction), or quantitative traits, 
measured by a continuous variable [for ex- 
ample, diastolic blood pressure, fasting glu- 
cose concentrations, or immunoglobulin E 
(IgE) titers] whose level may be set by the 
combined action of individual quantitative 
trait loci. Discrete traits may represent a 
threshold effect, produced whenever an un- 
derlying quantitative variable, influenced 
by multiple genes, exceeds a critical thresh- 
old, or a pure synthetic effect, requiring the 
simultaneous and joint action of each of 
several mutations. 

Polygenic inheritance is easily demon- 
strated in animal crosses, in the transmis- 
sion pattem of quantitative traits such as 
blood pressure (1 7), and in the pervasive 
"genetic background" effects that represent 
the action of modifier genes. For example, a 
mutation in the mouse Apc gene causes 
numerous intestinal neoplasias and early 
death in B6 mice but has barely noticeable 
effects when bred into an  AKR strain (18). 
More generally, the phenotype of "knock- 
out mice" may vary dramatically on differ- 
ent strain backgrounds, pointing to previ- 
ously unknown interacting genes. 

Polygenic inheritance is harder to dem- 
onstrate directly in humans, but it is surely 
no  less common. One form of retinitis pig- 
mentosa was shown to be due to strict di- 
genic inheritance, requiring the presence of 
heterozygous mutations at the peripherinl 
RDS and ROMl  genes (1 9)  (whose encod- 
ed proteins are thought to interact in the 
photoreceptor outer segment disc mem- 
branes). Some forms of Hirschsprung dis- 
ease appear to require the simultaneous 

presence of mutations on chromosomes 13, 
21, and possibly elsewhere (20). Polygenic 
inheritance complicates genetic mapping, 
because no single locus is strictly required to 
produce a discrete trait or a high value of a 
quantitative trait [except in the case of a 
pure synthetic interaction causing a discrete 
trait (21 , 22)]. 

High frequency of disease-causing alleles. 
Even a simple trait can be hard to map if 
disease-causing alleles D occur at high fre- 
quency in the population. The expected 
Mendelian inheritance Dattem of disease 
will be confounded by ;he problem that 
multiple independent copies of D may be 
segregating in the pedigree [often referred 
to as bilineality (23)] and that some indi- 
viduals may be homozygous for D [in which 
case one will not observe linkage between 
D and a specific allele at a nearby genetic 
marker, because either of the two homolo- 
gous chromosomes could be passed to an  
affected offspring (24)l. Late-onset Alzhei- 
mer's disease orovides an excellent exam- 
ple. Initial linkage studies found weak evi- 
dence of linkage to chromosome 19q, but 
they were dismissed by many observers be- 
cause the lod score (loearithm of the like- . " 

lihood ratio for linkage) remained relatively 
low, and it was difficult to pinpoint the 
linkage with any precision (25). The con- 
fusion was finally resolved with the discov- 
ery that the apolipoprotein E type 4 allele 
appears to be the major causative factor on 
chromosome 19. The high frequency of the 
allele (-16% in most populations) had in- 
terfered with the traditional linkage analv- " 
sis (26). High frequency of disease-causing 
alleles becomes an even greater problem if 
genetic heterogeneity is also present. 

Other transmission mechanisms. Finallv, , , 
mammalian genetics has revealed additional 
modes of genetic inheritance. These include 
mitochondrial inheritance (in which mito- 
chondria pass solely through the material 
germ line, and each meiotic transmission may 
involve selection from a potentially mixed 
population of mutant and normal organelles); 
imprinting (due to differential activity of the 
paternal and maternal copies of a gene); and 
phenomena due to the expansion of trinucle- 
otide repeats such as so-called "anticipation." 
These modes of transmission pose little diffi- 
cultv when thev obev strict rules (as for im- 

but ;hey dan complica;e analysis 
when they lead to highly variable transmis- 
sion rates [as for some mitochondrial diseases 
or trinucleotide repeat diseases (27)] and may 
require specialized methods (28). 

Genetic Epidemiology 

Before undertaking DNA-based studies 
aimed at genetic dissection, one would ide- 
ally like to infer as much as possible about 
the genetic basis of a trait on the basis of 

the pattern of disease incidence in families 
and populations. Such genetic epidemiolo- 
gy constitutes a major field in its own right 
for which excellent reviews exist (29). We . , 

focus on a few key concepts. 
Twin stdies. Whereas ex~erimental ee- - 

neticists can propagate inbred lines with iso- 
genic genetic constitution, the only opportu- 
nity to examine the expression of a human 
trait in a fixed genetic background comes 
from the study of monozygotic (MZ) twins 
(30). The absolute risk to an MZ twin of an 
affected individual provides a direct estimate 
of penetrance for a given environment. 

Relative risk. The most imoortant eoi- 
demiological parameter is the relative 
risk, A,, defined as the recurrence risk for 
a relative of an  affected person divided by 
the risk for the general population. The  
subscript R denotes the type of relation; 
for example, ho and As are the risks to 
offspring and sibs, respectively. The  mag- 
nitude of A, is related to the degree of 
concordant inheritance for genetic deter- - 
minants in affected relative pairs and thus 
is related to the ease or difficultv of ee- , " 
netic mapping, as shown by Risch (31- 
33). Genetic mapping is much easier for 
traits with high A (for example, As > 10) 
than for those with low A (for example, As 
< 2). As an  illustration of the range, As = 
500 for cystic fibrosis; 15 for type I dia- 
betes [of which a factor of 3 to 4 is 
attributable to concordance at the human 
leukocyte antigen (HLA) complex]; 8.6 
for schizophrenia; and 3.5 for type I1 dia- 
betes. For a quantitative phenotype, a 
similar measure is the heritability of the 
trait (34) .  . , 

Segregation analysis. Segregation analy- 
sis involves fitting a general model to  the 
inheritance pattern of a trait in pedigrees. 
Using a model involving the presence of a 
simple Mendelian factor in a background 
of multifactorial inheritance, one tries to 
estimate key parameters such as the allele 
frequency, penetrance, and proportion of 
cases exolained bv the Mendelian factor. 
A n  important example is the work of 
Newman et al. and other researchers (35,  
36) who showed that the degree of famil- 
ial clustering for breast cancer observed in " 
1579 nuclear families was consistent with 
a dominantly acting rare allele (frequency 
= 0.06%), accounting for 4% of affected 
women (but 20% of affected mother- 
daughter pairs), in a larger background of 
multifactorial causation. Segregation anal- 
ysis can be extremely sensitive to biases in 
the ascertainment of families [for exam- 
ple, if preferential inclusion of affected 
individuals may cause the penetrance to 
be greatly overstated (37)], and it may 
have little ability to  distinguish among 
the many possible modes of inheritance 
for complex traits (38). Moreover, it can 
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be especially difficult to  estimate the 
number of distinct genes influencing a 
trait, except in very favorable situations 
(39) ,  and to identify penetrance parame- 
ters associated with multiple loci (40). 

Defining Diseases 

Given the many problems that can hamper 
genetic dissection of complex traits, genet- 
icists try to stack the deck in their favor. By 
narrowing the definition of a disease or 
restricting the patient population, it is often 
possible to work with a trait that is more 
nearly Mendelian in its inheritance pattern 
and more likely to be homogeneous. The 
extent to which redefinition simplifies the 
task of genetic mapping can be measured by 
the resulting increase in the relative risk AR. 
Although there is no guaranteed method to 
increase AR, four criteria are often useful. 

Clinical phenotype. For example, when 
colon cancer is restricted to cases with ex- 
treme polyposis, the trait becomes a simple 
autosomal dominant one-which allowed 
positional cloning of the APC gene on 
chromosome 5 (41). Other forms of colon 
cancer can be distinguished by the pheno- 
type of replication errors in tumors (42). In 
studying hypertension, one can increase A 
by focusing on cases with combined hyper- 
tension and hyperlipidemia (43). 

Age at onset. Breast cancer and Alzhei- 
mer's disease are rendered genetically more 
homogeneous by focusing on early-onset 
cases [although the latter can be caused by 
at least three independent loci (44)l. Sim- 
ilarlv. the relative risk for death from heart , , 
attack is much greater for early-onset cases 
(A, = 7 in men and -15 in women under 
~ .2 

age 65) as compared with late-onset cases 
(A, < 2)  (45). 

Family history. For example, the sister of 
a woman with breast cancer has a much 
greater risk if her mother is also affected 
(35, 36). Hereditary nonpolyposis colon 
cancer ( 1  2) was genetically mapped by de- 
fining the trait to require the presence of at 
least two other affected relatives. 

Severity. For continuous traits, it often 
pays to consider as affected only those in- 
dividuals at the extreme ends of the trait 
distribution. For example, one might select 
families for a hypertension study on the 
basis of the presence of at least one member 
with blood pressure exceeding 140190. Such 
selection can greatly increase the ability to 
map genes, both in human families (46) and 
experimental crosses (47). 

Another way to improve the prospects 
for genetic dissection is to  focus on specific 
ethnic groups. Population genetic theory 
and data suggest that there will be greater 
genetic and allelic homogeneity in a more 
genetically isolated group (such as Sardin- 
ians, Basques, Finns, and Japanese) than in 

a large, mixed population (such as is in New 
York City or Los Angeles). Different ethnic 
groups may shed light on different aspects of 
a disease, which might be much harder to 
discern in an  outbred population. For ex- 
ample, it has been suggested that there may 
be differences in the genetic etiology of type 
I1 diabetes between Mexican Americans 
and Scandinavians, with somewhat higher 
frequency of early insulin resistance in the 
former and an early pancreatic beta cell 
defect in the latter (48). Focusing on a 
highly restricted population may also offer 
advantages for eventual positional cloning, 
because one may be able to exploit linkage 
disequilibrium for fine-structure genetic 
mapping (discussed below). 

Genetic Dissection: 
The Fourfold Way 

The methods available for genetic dissec- 
tion of complex traits fall neatly into four 
categories: linkage analysis, allele-sharing 
methods, association studies in human pop- 
ulations, and genetic analysis of large cross- 
es in model organisms such as the mouse 
and rat. 

Linkage Analysis 

Linkage analysis involves proposing a mod- 
el to explain the inheritance pattern of 
phenotypes and genotypes observed in a 
pedigree (Fig. 1). It is the method of choice 
for s i m ~ l e  Mendelian traits because the al- 
lowable models are few and easily tested. 
However, applications to complex traits can 
be more problematic, because it may be 
hard to find a precise model that adequately 
explains the inheritance pattern. 

Formally, linkage analysis consists of 
finding a model MI,  positing a specific lo- 
cation for a trait-causing gene, that is much 
more likelv to have ~roduced  the observed 
data than k null hypothesis Mo, positing no 
linkage to a trait-causing gene in the region. 
The evidence for MI versus Mo is measured 
by the likelihood ratio, LR = Prob 

Linkage analysis 

)P 

Fig. 1. Linkage analysis involves constructing a 
transmission model to explain the inheritance of a 
d~sease in pedigrees. The model is straightfor- 
ward for simple Mendelian traits but can become 
very complicated for complex tra~ts. Linkage anal- 
ysis has been appl~ed to hundreds of simple Men- 
delian traits, as well as to such situat~ons as ge- 
netic heterogeneity in breast cancer and two- 
gene interactions in multiple sclerosis. 

(DatalMl)/Prob (DatalM,), or, equivalent- 
ly, by the lod score, Z = loglo(LR) (49, 50). 

The model MI  is typically chosen from 
among a family of models M(@), where @ is 
a parameter vector that might specify such 
information as the location of the trait- 
causing locus, the allele frequency at the 
trait and marker loci, the Denetrance func- 
tion, and the transmission frequencies from 
parent to  child. Many of these parameters 
may already be known (such as penetrance 
functions from prior segregation analysis or 
marker allele frequencies from population 
surveys). The remaining, unknown param- 
eters are chosen to be the maximum likeli- 
hood (ML) estimate, that is, the value Q, 
that makes the data most likely to have 
occurred (51). The null model Mo corre- 
sponds to a specific null hypothesis about 
the parameters, a , .  

For e x a m ~ l e ,  the model for a s i m ~ l e  . , 

Mendelian recessive or dominant disease 
is completely specified except for the re- 
combination frequency 0 between the dis- 
ease gene and a marker; the null hypoth- 
esis of nonlinkage corresponds to 0 = 

50% recombination. 
The ML model ~ ( 6 )  is accepted (com- 

pared with Mo)Aif the corresponding maxi- 
mum lod score Z is large, that is, exceeds a 
critical threshold T. Of course, a crucial 
issue is the appropriate significance thresh- 
old. The traditional lod score threshold has 
been 3.0 (50, 52), although the appropri- 
ateness of this choice is discussed in the 
section on statistical significance. - 

Applications. Linkage analysis is the cur- 
rent workhorse of human genetic mapping, 
having been applied to hundreds of simple 
monogenic traits. Linkage analysis has also 
been successfully applied to genetically het- 
erogeneous traits in some cases. The sim- 
plest situation is when unequivocal linkage 
can be demopstrated in a single large ped- 
igree (with Z >> 3) ,  even though other 
families may show no  linkage. This has 
been done for such diseases as adult ~ o l v -  

& ,  

cystic kidney disease, early-onset Alzhei- 
mer's disease, and psoriasis (53). If linkage 
cannot be established on the basis of any 
single pedigree, one can ask whether a sub- 
set of the pedigrees collectively shows evi- 
dence of linkage. Of course, one cannot 
simply choose those families with positive 
lod scores and exclude those with negative 
lod scores. as such an ex ~ o s t  selection 
criterion will always produce a high positive 
lod score. Instead, one must ex~licitlv allow 
for genetic heterogeneity withib the linkage 
model (through the inclusion of an  admix- 
ture parameter a specifying the proportion 
of linked families), although care is required 
because the resulting lod score has irregular 
statistical properties (54). Alternatively, 
families can be selected on the basis of a 
priori considerations. A n  example of this 
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approach is provided by the genetic map
ping of a gene for early-onset breast cancer 
(BRCA1) to chromosome 17q (55). Fami
lies were added to the linkage analysis in 
order of their average age of onset, resulting 
in a lod score that rose steadily to a peak 
of 2 = 6.0 with the inclusion of families 
with onset before age 47 and then fell with 
the addition of later-onset pedigrees. Not
withstanding these successes, many failed 
linkage studies may result from cryptic heter
ogeneity. It is always wise to try to redefine 
traits to make them more homogeneous. 

Linkage analysis can also be applied 
when penetrance is unknown. One ap
proach is to estimate the ML value of the 
penetrance p within the linkage analysis. A 
particular concern is to avoid incorrectly 
overestimating £>, because this can lead to 
spurious evidence against linkage (caused 
by individuals who inherit a trait-causing 
allele but are unaffected). One can guard 
against this problem by performing an af-
fecteds-only analysis, in which one records 
unaffected individuals as "phenotype un
known" or, equivalently, sets the pen
etrance artificially low (p « 0). This ap
proach was important in studies of both 
early-onset and late-onset Alzheimer's dis
ease (25, 56). In the latter case, the lod 
score increased from 2.20 with an age-ad
justed penetrance function to 4.38 with an 
affecteds-only analysis. 

Some traits are so murky that it is un
clear who should be considered affected. 
Psychiatric disorders fall into this category, 
and investigators have explored using vari
ous alternative diagnostic schemes within 
their analysis. For example, schizophrenia 
might be defined strictly to include only 
patients meeting the Diagnostic and Statisti
cal Manual of Mental Disorders (DSM) cri
teria or be defined more loosely to include 
patients with so-called schizoid personality 
disorders (57). This approach is permissible 
in theory but requires great care in adjusting 
the significance level to offset the effect of 
multiple hypothesis testing. 

Linkage analysis can also be extended to 
situations in which two or more genes play 
a role in the inheritance of a disease, simply 
by examining the inheritance pattern of 
pairs of regions. Such an approach has been 
dubbed simultaneous search (21, 58, 59). It 
can be applied to the situation of a geneti
cally heterogeneous trait or to an interac
tion between two loci. Multiple sclerosis in 
large Finnish kindreds has been reported to 
be linked to the inheritance of both HLA 
on chromosome 6 and the gene for myelin 
basic protein on chromosome 18, on the 
basis of such a two-locus analysis (60). 

Limitations. Linkage analysis is subject to 
the same limitations as any model-based 
method. It can be very powerful, provided 
that one specifies the correct model (61, 

62). Use of the wrong model, however, can 
lead one to miss true linkages and some
times to accept false linkages (63, 64). In 
particular, exclusion mapping of regions can 
only demonstrate absence of a trait-causing 
locus fitting the particular model tested 
(50, 52). Finally, testing many models re
quires the use of a higher significance level, 
which may decrease the power to detect a 
gene; this issue is discussed in the section on 
statistical significance. The more complex 
the trait, the harder it is in general to use 
linkage analysis (65). 

Computation. Calculating the likelihood 
ratio can be horrendously complicated in 
some cases and requires computer programs 
(66, 67). Elston and Stewart invented the 
first practical algorithm for calculating like
lihoods (68, 69), which was implemented 
by Ott in the first general-purpose linkage 
program LIPED (70) and is also at the heart 
of the widely used LINKAGE package (71). 
However, the algorithm is not a complete 
panacea. In its original form it does not 
easily accommodate environmental or poly
genic covariation among family members, 
which form the basis of so-called "mixed 
models" (67, 72) used widely in genetic 
epidemiology (73). In addition, it can be 
extremely slow for analysis with many ge
netic markers or inbred families. Alterna
tive exact algorithms have been developed 
for some applications (74), including one 
that allows multipoint homozygosity map
ping (75), but these tend to be limited to 
smaller pedigrees. Likelihoods can also be 
estimated by simulation-based methods, 
such as the Gibb's sampler and Monte 
Carlo Markov chains (76). There remain 
many important computational challenges 
in linkage analysis. 

Allele-Sharing Methods 

Allele-sharing methods are not based on 
constructing a model, but rather on reject
ing a model. Specifically, one tries to prove 
that the inheritance pattern of a chromo
somal region is not consistent with random 
Mendelian segregation by showing that af
fected relatives inherit identical copies of 
the region more often than expected by 
chance (Fig. 2). Because allele-sharing 
methods are nonparametric (that is, assume 
no model for the inheritance of the trait), 
they tend to be more robust than linkage 
analysis: affected relatives should show ex
cess allele sharing even in the presence of 
incomplete penetrance, phenocopy, genetic 
heterogeneity, and high-frequency disease 
alleles. The tradeoff is that allele-sharing 
methods are often less powerful than a cor
rectly specified linkage model. 

Allele-sharing methods involve studying 
affected relatives in a pedigree to see how 
often a particular copy of a chromosomal 

region is shared identical-by-descent (IBD), 
that is, is inherited from a common ancestor 
within the pedigree. The frequency of IBD 
sharing at a locus can then be compared 
with random expectation. Formally, one 
can define an identity-by-descent affected-
pedigree-member (IBD-APM) statistic 

t(s) = 2 Vs) 
hi 

where xJs) is the number of copies shared 
IBD at position s along a chromosome, and 
where the sum is taken over all distinct pairs 
(ij) of affected relatives in a pedigree. The 
results from multiple families can be com
bined in a weighted sum T(s). Assuming ran
dom segregation, T(s) tends to a normal dis
tribution with a mean |x and variance a that 
can be calculated on the basis of the kinship 
coefficients of the relatives compared (77, 
78). Deviation from random segregation is 
detected when the statistic (T — |x)/cr ex
ceeds a critical threshold (see the section on 
statistical significance). 

Sib pairs. Affected sib pair analysis is the 
simplest form of this method. For example, 
two sibs can show IBD sharing for zero, one, 
or two copies of any locus (with a 25%-
50%-25% distribution expected under ran
dom segregation). If both parents are avail
able, the data can be partitioned into sep
arate IBD sharing for the maternal and 
paternal chromosome (zero or one copy, 
with a 50%-50% distribution expected un
der random segregation). In either case, 
excess allele sharing can be measured with a 
simple x2 test (79-81). 

Sib pair studies have played an impor
tant role in the study of type I diabetes. 
Excess allele sharing confirmed the impor
tant role of HLA, although the inheritance 
pattern fit neither a simple dominant or 
recessive model (82, 83). With the avail
ability of a comprehensive human genetic 

Allele-sharing methods 
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Fig. 2. Allele-sharing methods involve testing 
whether affected relatives inherit a region identi
cal-by-descent (IBD) more often than expected 
under random Mendelian segregation. Affected 
sib pair analysis is a well-known special case, in 
which the presence of a trait-causing gene is re
vealed by more than the expected 50% IBD allele 
sharing. The method is more robust for genetic 
complications than linkage analysis but can be 
less powerful than a correctly specified linkage 
model. Examples include applications to type I 
diabetes, essential hypertension, IgE levels, and 
bone density in postmenopausal women. 
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linkage map, sib pair analysis has been ap- 
plied to a whole-genome scan, and excess 
allele sharing has been found at a locus on 
chromosome 1 lq, pointing to a previously 
unidentified causal factor in type I diabetes 
(84). In a similar search restricted to the X ~, 

chromosome, brothers concordant for the 
trait of homosexual orientation showed sig- 
nificant excess allele sharing (33 out of 40 
cases) in the region Xq28, suggesting the 
involvement of a genetic factor influencing 
at least the particular subtype of homosex- 
uality studied (85). The same approach can 
be applied to affected uncle-nephew pairs 
and cousin pairs, for example. 

IBD versus IBS. One often cannot tell 
whether two relatives inherited a chromo- 
somal region IBD, but only whether they 
have the same alleles at genetic markers in " 

the region, that is, are identical by state 
(IBS). It is usually safe to infer IBD from 
IBS when a dense collection of highly ~ o l y -  
momhic markers has been examined, but 
the early stages of genetic analysis may in- 
volve sparser maps with less informative 
markers. Two approaches have been devel- 
oped to cope with this important practical 
difficulty. The first amounts to inferring 
IBD sharing on the basis of the marker data 
(expected IBD-APM methods) (86), whereas 
the second uses another statistic based ex- 
plicitly on IBS sharing (IBS-APM method) 
(78, 87). (The inventors of the latter meth- 
od dubbed it s im~lv the APM method, but . , 
we prefer the more descriptive names used 
here.) Both approaches are important, al- 
though key statistical and computational 
issues remain open for each. 

A number of recent studies have applied 
IBS-APM methods to complex traits. The 
angiotensinogen gene has been shown with 
IBS-APM analysis to be linked to essential 
hypertension in multiplex families, al- 
though the gene explains only a minority of 
the phenotype (88). Similarly, linkage of 
late-onset Alzheimer's disease to chromo- 
some 19 could be established by IBS-APM, 
even though traditional lod score analysis 
gave more equivocal results (25). 

Quantitative traits. Allele-sharing meth- 
ods can also be applied to quantitative 
traits. An approach proposed by Haseman 
and Elston (89) is based on the notion that 
the phenotypic similarity between two rel- 
atives should be correlated with the number 
of alleles shared at a trait-causing locus. " 
Formally, one performs regression analysis 
of the suuared difference A2 in a trait be- 
tween two relatives and the number x of 
alleles shared IBD at a locus. The a ~ ~ r o a c h  . . 
can be suitably generalized to other rela- 
tives (90) and multivariate phenotypes 
(91 ). It has been used, for example, to relate 
serum IgE levels with allele sharing in the 
region of the gene encoding interleukin-4 
and bone density in postmenopausal wom- 

en with allele sharing in the region of the 
vitamin D receptor (92, 93). In addition, 
there has been a resurgence of interest in 
the theoretical aspects of mapping genes 
with IBD and IBS methods (94). 

APM methods have been applied to 
whole-genome searches only in a few cases, 
including a recent study on manic depres- 
sion (95). This situation is certain to 
change in the near future. 

Association Studies 

Association studies do not concern familial 
inheritance patterns at all. Rather, they are 
case-control studies based on a comparison 
of unrelated affected and unaffected indi- 
viduals from a population (Fig. 3). An allele 
A at a gene of interest is said to be associ- 
ated with the trait if it occurs at a signifi- 
cantly higher frequency among affected 
compared with control individuals. The sta- 
tistical analysis is simple, involving only a 
2x2 contingency table. The biggest poten- 
tial pitfall of association studies is in the 
choice of a control group (which is in sharp 
contrast to linkage and allele-sharing meth- 
ods, which require no control group because 
they involve testing a specific model of 
random Mendelian segregation within a 
family). Although association studies can 
be performed for any random DNA poly- 
morphism, they are most meaningful when 
applied to functionally significant varia- 
tions in genes having a clear biological 
relation to the trait. 

Association studies have played a crucial 
role in implicating the HLA complex in the 
etiology of autoimmune diseases. The allele 
HLA-B27, for example, occurs in 90% of 
patients with ankylosing spondylitis but 
only 9% of the general population (96). 
There are scores of HLA associations in- 
volving such diseases as type I diabetes, 
rheumatoid arthritis, multiple sclerosis, ce- 
liac disease, and systemic lupus erythroma- 
tosus (97). More recently, association stud- 
ies played a key role in implicating the 

Association studies . . I 0 0  

Fig. 3. Association stud~es test whether a par- 
ticular allele occurs at higher frequency among 
affected than unaffected individuals. Associa- 
tion studies thus involve population correlation, 
rather than cosegregation within a family. Ex- 
amples include HLA associations in many auto- 
immune diseases, apolipoprotein E4 in Alzhei- 
mer's, and angiotension converting enzyme 
(ACE) in heart disease. 

apolipoprotein E gene in both late-onset 
Alzheimer's disease and heart disease and 
the angiotensin converting enzyme (ACE) 
gene in myocardial infarction (98). In ad- 
dition, methods for assessing associations 
between marker loci and quantitative traits 
have received recent attention (99). 

What does a positive association imply 
about a disease? On its own. verv little. , , 
Associations can arise for three reasons, one 
of which is completely artifactual. 

1) Positive association can occur if al- 
lele A is actuallv a cause of the disease. In 
this case, the same positive association 
would be expected to occur in all popula- 
tions (100). 

2) Positive association can also occur if 
allele A does not cause the trait but is in 
linkage disequilibrium with the actual 
cause. that is. A tends to occur on those 
chromosomes that also carry a trait-causing 
mutation. Linkage disequilibrium will arise 
in a population when two conditions are 
met: most cases of the trait are due to 
relatively few distinct ancestral mutations 
at a trait-causing locus, and the marker 
allele A was present on one of these ances- 
tral chromosomes and lies close enough to " 

the trait-causing locus that the correlation 
has not yet been eroded by recombination 
during the population's history. Linkage dis- 
equilibrium is most likely to occur in a 
young, isolated population. 

True associations due to linkage disequi- 
librium can yield seemingly contradictory 
results. Because linkage disequilibrium de- 
pends on a population's history, a trait 
might show positive association with allele 
A, in one isolated population, with allele 
A, in second isolated population, and with 
no allele in a large, mixed population. 
Moreover, a trait may show no association 
with an Eco RI restriction fragment length 
polymorphism (RFLP) in a gene but strong 
association with a nearby Bam HI RFLP, 
because of the particular population genetic 
features of a population ( 1  01 ). 

3) Most disturbingly, positive associa- 
tion can also arise as an artifact of popula- 
tion admixture. In a mixed population, any 
trait present at a higher frequency in an 
ethnic group will show positive association 
with any allele that also happens to be more 
common in that group. To give a light- 
hearted example, suppose that a would-be 
geneticist set out to study the "trait" of 
ability to eat with chopsticks in the San 
Francisco population by performing an as- 
sociation study with the HLA complex. 
The allele HLA-AI would turn out to be 
positively associated with ability to use 
chopsticks-not because immunological 
determinants play any role in manual dex- 
terity, but simply because the allele HLA- 
A1 is more common among Asians than 
Caucasians. 
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This problem has afflicted many associ- 
ation studies performed in inhomogeneous 
populations ranging from the population of 
metropolitan Los Angeles to Native Amer- 
ican tribes. A subtle example arose because 
Pima Amerindians are much more suscep- 
tible than Caucasians to type I1 diabetes. 
Studies in the Pima showed association be- 
tween type I1 diabetes and the Gm locus, 
with the "protective" allele being the one 
present at higher frequency in Caucasians. 
Subsequent work, however, revealed that 
the association was apparently because tribe 
members have different degrees of Cauca- 
sian ancestry: The presence of a "Cauca- 
sian" allele at any gene tends to correlate 
with a higher degree of Caucasian ancestry, 
which in turn tends to correlate with a 
lower risk of type I1 diabetes (102). 

To prevent spurious associations arising 
from admixture, a number of steps should be 
taken. 

1) If possible, association studies should 
be performed within relatively homoge- 
neous populations. If an association can 
only be found in large, mixed populations 
but not in homogeneous groups, one should 
suspect admixture. 

2)  Given the difficulty of selecting a 
control group that is perfectly matched for 
ethnic ancestry, association studies should 
use an "internal control" for allele frequen- 
cies: a study of affected individuals and their 
parents. If the parents have genotypes A,/ 
A, and AJA, and the affected individual 
has genotype A,/A,, then the genotype A,/ 
A4 (consisting of the two alleles that the 
affected individual did not inherit) ~rovides 
an "artificial control" that is well matched 
for ethnic ancestry. This method is some- 
times called the affected family-based con- 
trol or haplotype relative risk method and 
can be applied either to the genotypes or to 
the alleles (103). In our opinion, such in- 
ternal controls should be routinely used. 

Collecting parental DNA is useful for a 
second, unrelated reason. With knowledge 
of parental genotypes, one 'can construct 
multimarker haplotypes (indicating the al- 
leles found on the same maternally or pa- 
ternally derived chromosome), which can 
be much more informative than studying 
single markers one at a time. This can be 
especially useful in isolated populations, 
where only a limited number of distinct 
trait-causing chromosomes may be present. 

3) Once a tentative association has 
been found, it should be subjected to a 
transmission disequilibrium test (TDT) 
(104, 105). The test has the premise that a 
parent heterozygous for an associated allele 
A, and a nonassociated allele A, should 
more often transmit A, than A, to an 
affected child. The TDT was first applied to 
the puzzling situation of the insulin gene, 
which showed strong association but no 

linkage to type I diabetes; linkage had 
been obscured because of the substantial 
proportion of homozygous (and thus non- 
segregating) parents (104). It should be 
noted that TDT cannot be directly ap- 
olied to the s a m ~ l e  in which initial asso- 
ciation was found (because affected indi- 
viduals necessarilv have an excess of the 
associated allele)' but rather to a new 
sample from the same population. 

The controversy over a reported associ- 
ation between alcoholism and an allele at 
the dopamine D2 receptor (DRD2) illus- 
trates all the issues in association studies. 
The initial study compared postmortem 
samples from 35 alcoholics and 35 controls, 
with no attempt to control for ethnic an- 
cestry (other than race) (106). For a Taq I 
RFLP located about 10 kb downstream from 
DRD2, the A1 allele was found to be 
Dresent in 69% of alcoholics and 27% of 
controls. Attempts to replicate this finding, 
however, have yielded conflicting results, 
with some authors finding no association 
whatsoever and others reporting association 
for severe alcoholism only (107). Reveal- 
ingly, the frequency of the polymorphism 
has been shown to vary substantially among 
populations and among the various "con- 
trol" groups used. In light of this variation, 
it is imperative that studies use internal 
control genotypes, although this has not 
been done to date. Association studies in 
relatively homogeneous populations, link- 
age studies, and transmission tests have all 
been negative (108). At present, there is no 
compelling evidence that the reported as- 
sociation is not an artifact of admixture. 

Association studies are not well suited to 
whole-genome searches in large, mixed 
populations. Because linkage disequilibrium 
extends over very short distances in an old 
population (109), one would need tens of 
thousands of genetic markers to "cover" the 
genome. Moreover, testing many markers 
raises a serious problem of multiple hypoth- 
esis testing: each association test is nearly 
independent. Testing n loci each with k 
alleles amounts to performing about n(k - 
1) independent tests, and the required sig- 
nificance level should be divided by this 
factor. A nominal significance level of P = 
0.0001 is thus needed simply to achieve an 
overall false positive rate of 5%, if one tests 
100 markers with six alleles each. (Some 
authors propose to avoid this problem by 
identifying all results significant at the P = 
0.05 level in an initial sam~le  and then 
attempting to replicate them in a second 
sample (1 10). However, the same multiple 
testing issue still applies to retesting many 
results at the second stage.) Genomic 
search for association may be more favor- 
able in young, genetically isolated popula- 
tions because linkage disequilibrium ex- 
tends over greater distances, and the num- 

ber of disease-causing alleles is likely to be 
fewer (21. 1 1  1 ). . , 

In summary, linkage-type studies and as- 
sociation studies have manv crucial differ- 
ences. Association studies iest whether a 
disease and an allele show correlated occur- 
rence in a population, whereas linkage stud- 
ies test whether they show correlated trans- 
mission within a pedigree. Association stud- 
ies focus on population frequencies, whereas 
linkage studies focus on concordant inher- 
itance. One may be able to detect linkage 
without association (for example, when 
there are many independent trait-causing 
chromosomes in a population, so that asso- 
ciation with any particular allele is weak) or 
association without linkage (for example, 
when an allele explains only a minor pro- 
portion of the variance for a trait, so that 
the allele may occur more often in affected 
individuals but does a poor job of predicting 
disease status within a pedigree). Linkage 
and association are often used interchange- 
ably in popular articles about genetics, but 
this practice should always be avoided. 

Experimental Crosses: Mapping 
Polygenic Traits, Including QTLs 

Experimental crosses of mice and rats of- 
fer an ideal setting for genetic dissection 
of mammalian physiology (Fig. 4). With 
the opportunity to study hundreds of mei- 
oses from a single set of parents, the prob- 
lem of genetic heterogeneity disappears, 
and far more complex genetic interac- 
tions can be  robed than is ~ossible for 
human families. Animal studies are thus 
an extremely powerful tool for extending 
the reach of genetic analysis. Of course, 
animal studies must alwavs be evaluated 
for their applicability to the study of hu- 
man diseases. Because disease-causing 
mutations may occur at many steps in a 
pathway, animal models may not point to 
those genes most frequently mutated in hu- 
man disease. However, animal studies 
should identify key genes acting in the same 
biochemical pathway or physiological sys- 
tem. Animal models that are poor models 
for pharmacologists seeking to evaluate a 
new human drug therapy may nonetheless 
be excellent models for geneticists seeking 
to elucidate the ~ossible molecular mecha- 
nisms or pathways affected in a disease. 

The power of experimental crosses is 
most dramatically seen in the ability to 
dissect quantitative traits into discrete ge- 
netic factors (1 12). Systematic quantitative 
trait locus (QTL) mapping has only recent- 
ly become possible with the construction of 
dense genetic linkage maps for mouse and 
rat (18, 1 13, 1 14) and the development of 
a suitable analytical approach for a whole- 
genome search, known as interval mapping. 
Interval mapping uses phenotypic and ge- 
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netic marker information to estimate the 
probable genotype and the most likely QTL 
effect at every point in the genome, by 
means of a maximum-likelihood linkage 
analysis. The basic method was introduced 
by Lander and Botstein for a simple situa- 
tion (47) but has been generalized to a wide 
variety of settings (59, 1 15, 11 6). In gen- 
eral, QTL mapping is much more powerful 
in experimental crosses than in human fam- 
ilies because of the fundamental differences 
in the statistical comparisons involved 
(1 17) and because nongenetic noise can be 
decreased through the use of progeny tests, 
recombinant inbred strains, and recombi- 
nant congenic strains (47, 118). 

Genome-wide QTL analysis was first ap- 
plied to fruit characteristics in the tomato 
(1 19), but it was soon used in mammals to 
study epilepsy in mice and hypertension in 
rats (1 13, 120). In the latter case, the ani- 
mal study rapidly stimulated parallel human 
studies, with the reported linkage of the 
ACE gene to hypertension in rats provok- 
ing investigation of various genes in the 
pathway and leading to the implication of 
angiotensinogen in essential hypertension 
in humans. In only a short time, there has 
been an explosion of interest in QTL map- 
ping in both agriculture and biomedicine 
(121). The approach opens the way to un- 
derstanding the genetic basis for the tre- 
mendous strain variations seen in such 
quantitative traits as cancer susceptibility, 
drug sensitivity, resistance to infection, and 
aggressive behavior (1 22). The most impor- 
tant application of QTL mapping may turn 
out to be the identification of modifier 
genes affecting single-gene traits. Yeast ge- 
neticists routinely use suppressor analysis to 
study a mutant gene by isolating secondary 
mutations capable of modifying the original 
mutant phenotype. Although mammalian 
geneticists cannot easilv use mutagenesis to 
Find suppressors, they may be a i e  to ac- 
complish the same goal by breeding muta- 
tions onto different genetic backgrounds 
and dissecting the QTLs that affect the 
phenotypic expression. A first such exam- 
ple is the finding that intestinal neoplasias 
induced by mutations in the mouse Apc 
gene can be dramatically influenced by a 
modifier locus on chromosome 4 (1 8). By 

applying this approach to the ever-growing 
list of gene knockouts, it should be possible 
to identify many additional interacting 
genes. 

Experimental crosses also facilitate anal- 
ysis of discrete traits with complex genetic 
etiology. Studies of type I diabetes in the 
nonobese diabetic mouse report the map- 
ping of a dozen loci, each making a partial 
contribution to a threshold trait (123). 
Analvsis of tvDe I diabetes in the BB rat 

, &  

points to a purely synthetic interaction with 
one, two, or three genes required to produce 
disease, depending on the particular cross 
(124). 

After initial mapping, experimental ge- 
neticists can study the physiological effects 
of individual polygenic factors by construct- 
ing congenic strains that differ only in the 
region of a single locus. Genes may also be 
mapped more finely by systematically whit- 
tling away at the size of the congenic inter- 
val. In some cases, synteny conservation in 
gene order between different mammals may 
point to interesting regions to investigate in 
the human genome. 

An important point about the use of 
experimental crosses deserves to be empha- 
sized. because it is commonlv misunder- 
stood. Genetic mapping results'need not be 
consistent among different crosses. Linkage 
analysis reveals only those trait-causing 
genes that differ between the two ~arenta l  
strains used. A QTL may thus be detected 
in an A X B cross, but not in an A X C 
cross. Moreover, the effect of a QTL allele 
may change-or even disappear-when 
bred onto a different genetic background, 
because of epistatic effects of other genes. 

Statistical. Significance 

One of the thorniest problems in the genet- 
ic analysis of complex traits is to know 
whether a result is statistically significant. 
Psychiatric genetics has confronted this is- 
sue most squarely, as reported linkages to 
manic depression or schizophrenia have 
typically failed to withstand close scrutiny 
or replication (57, 125). Statistical signifi- 
cance is a challenging problem because ge- 
netic analysis can involve two types of fish- 
ing expeditions: testing many chromosomal 

Experimental crosses 

Fig. 4. Experimental crosses can provide a large number of progeny while ensuring genetic homogeneity. 
As a result, experimental crosses permit the genetic dissection of more complex genetic interactions than 
directly possible in human families, such as mapping of QTLs. Examples include epilepsy in mice, 
hypertension in rats, type I diabetes in mice and rats, and susceptibility to intestinal cancer in mice. 

regions across a genome and testing multi- 
ple models for inheritance. 

For example, human geneticists have 
long used the convention that a lod score 
exceeding 3 should be required to declare 
linkage to a simple Mendelian trait. The 
threshold was based on a Bayesian argu- 
ment involving the prior probability of 
finding a gene and aimed to yield a false 
positive rate of 5%. Unfortunately, the rea- 
soning does not extend well to the modem 
world of complex traits (with no clear prior 
hypothesis) or dense maps (with thousands 
of markers that can be tested). Instead. two 
approaches have gained favor in recent 
vears. 

Analytical methods. Formally speaking, 
genetic dissection involves calculating a ., ., 

statistic X throughout a genome. The issue 
of statistical significance consists of choos- 
ing an appropriate threshold T for declaring 
the presence of a gene, such that the ge- 
nome-wide false positive rate, Prob (X > 
T), is small, under the null hypothesis that 
no gene is present. In some cases, the ge- 
nome-wide false positive rate can be esti- 
mated on the basis of simple and elegant 
mathematical formulas. The unifying idea 
comes from the insight (47, 126) that many 
linkage statistics tend to an asymptotic null 
distribution that is closelv related to a well- 
known physical process called the Om- 
stein-Uhlenbeck diffusion (which describes 
the velocity of a particle undergoing one- 
dimensional Brownian motion). The prob- 
lem of random large excursions of such - 
diffusions has been extensively studied and 
applies directly to genetic analysis. The ge- 
nome-wide false positive rate, a,* = Prob 
(X > T somewhere in the genome), can be 
related to the nominal false positive rate, 
a, = Prob (X > T at a single point), by the 
formula 

where C is the number of chromosomes, G 
is genetic length of the genome in Morgans, 
and the constant p and the function h(T) 
are defined in the notes ( 1  27). Solving a,* 
= 0.05 yields the appropriate threshold T. 
As confirmed bv simulation studies. the 
estimates apply well to many basic situa- 
tions (47, 128). Appropriate thresholds for 
various settings are shown in Table 1. For 
traditional human linkage analysis, the ap- 
propriate asymptotic lod score threshold for 
a 5% significance level is about 3.3. The 
traditional threshold of 3 actuallv vields a , , 
genome-wide false positive rate of about 
9%. Note that all of the thresholds corre- 
spond to nominal p values less than lop4; 
this is considerably more stringent than the 
level of lop3 applied by many authors. 

The problem of searching over alterna- 
tive models has received formal attention in 
only a few cases (61 ). Current practice is to 
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consider that each of the k models exam- 
ined are statistically independent. The tra- 
ditional Bonferroni correction prescribes 
multiplying the significance level by k or, 
equivalently, increasing the required lod 
score threshold by about log,,(k) (129). 
The approach will likely be too conserva- 
tive if the models are dependent. 

Simulation studies. Unfortunately, the 
analytical approach depends on key as- 
sumptions (such as the normality of an 
underlying statistic and the pooling of many 
independent meioses) which will often be 
false in important situations, for example, 
affected-pedigree-member (APM) analysis 
of a modest number of large pedigrees. The 
best a ~ ~ r o a c h  in such cases is to directlv 

L .  

estjmate the false positive rate by simula- 
tion. In most settings, one can randomlv ., . 
generate the inheritance pattern of genetic 
markers in a pedigree according to the laws 
of Mendelian inheritance and then recalcu- 
late the value of the statistic X for each such 
replicate (61, 130). In some settings, one can 
apply permutation tests such as scrambling 
the phenotypes or genotypes in a sib pair or 
QTL analysis (1 3 1 ). Simulation-based tests 
have received a meat deal of attention in - 
statistics in general (1 32) and are very appro- 
priate for many genetic analyses settings (61, 
130, 131 ). They have been applied to the 

problem of genome-wide search and model 
selection (61 ). We strongly advocate this ap- 
proach, although broad use will require in- 
creased dissemination of computer programs 
for simulation analysis. 

A final issue should be noted. The an- 
propriate thresholds for whole-genome 
searches should always be applied to any 
new hypothesis, even if one only searches 
over a small subset of the genome. The 
reason is that traits of interest will typically 
be studied by multiple investigators, but 
only positive results will be published. The 
genetics community as a whole is thus con- 
ducting a whole-genome scan, and the full 
multiple testing threshold should be applied 
to any positive result. Some authors have 
suggested avoiding this problem by devel- 
oping hypotheses in one data set and retest- 
ing them in another (133). This can be 
helpful, but one must still apply a correction 
if one expects to retest multiple hypotheses 
at the second stage. 

Experimental Design 

In designing a genetic dissection, two cru- 
cial choices arise: (i) the number and type 
of families from which to collect data and 
(ii) the number and type of genetic markers 
to use. To make these choices, one needs to 

Table 1. Asymptotic thresholds corresponding to a genome-wide significance level of 5%. The human 
applications pertain to linkage analysis in a pedigree without many missing individuals and to the most 
common types of affected-relative pair analysis. For sib pairs, two cases are considered: (i) parents 
available for typing, with allele sharing on maternal and paternal chromosomes counted separately, and 
(i i )  parents unavailable for typing, in which case sibs share zero, one, or two copies and the possible 
triangle method is applied [see (81 )]. The mouse applications pertain to situations such as QTL mapping, 
in which either a single parameter is estimated (for example, an additive effect) or two parameters are 
estimated (for example, independent additive and dominant effects). Two-sided tests are used to allow 
for either parental strain to contribute alleles that increase the trait. Asymptotic thresholds correspond 
to the situation of a dense genetic map applied to a large number of meioses. Equivalent thresholds 
are given in terms of lod scores; normal scores used in allele-sharing methods and QTL mapping 
[that is, standard random normal variables (Z) or, more generally, square-roots of ~"ariables (*)I, and 
nominal p values for a single point. The appropriate asymptotic threshold is derived by setting [C + 2pG 
h(T)]m, = 0.05; see (127) for details. The assumed genome size is 3300 cM for the human and 1600 cM 
for the mouse. The slightly larger genetic length of 4000 cM for the human increases the required lod and 
normal-variable thresholds by about 0.1 units and decreases the p values by about 25%. 

Application Test lod 
score Normal score p value 

Human 
Standard linkage analysis, one free One-sided 3.3 3.9 (z) 5 x I O - ~  

parameter 
Allele sharing: Grandparent- One-sided 3.3 3.9 (Z) 5 x I O - ~  

grandchild pairs 
Allele sharing: Half-sib or sib pairs One-sided 3.6 4.1 (Z) 3 x I O - ~  

(parents typed) 
Allele sharing: Sib pairs (parents Possible 4.0 4.3(* 2df) 2 x lo-5 

untyped) triangle 
Allele sharing: Uncle-nephew or One-sided 3.7 4.1 (Z) 2 x lo-5 

first-cousin pairs 
Mouse 

Backcross or intercross: 1 degree of Two-sided 3.3 3.9 (Z) 1 x I O - ~  
freedom 

Intercross: 2 degrees of freedom Two-sided 4.3 4.4(@ 2df) 5 x I O - ~  
Recombinant inbred lines: 1 degree Two-sided 3.9 4.3 (Z) 2 x I O - ~  

of freedom 

know the statistical power to detect a gene 
as a function of these choices. 

For a simple Mendelian monogenic trait, 
a basic rule of thumb suffices: With a ge- 
netic map containing highly polymorphic 
markers every 20 centimorgans, linkage can 
be easily detected with about 40 informa- 
tive meioses (21 , 134). More generally, the 
power to detect linkage depends essentially 
on the number of informative meioses, al- 
most regardless of family structure. Power 
can be approximated simply by counting 
informative meioses and can be more pre- 
cisely estimated with simulation-based 
computer packages such as SIMLINK and 
SLINK (1 35). 

In contrast, there is no com~arable Dre- 
scription for a complex trait. The optimal 
experimental design depends on the precise 
details of the genetic complexities, informa- 
tion which is typically not known in ad- 
vance. The best compromise is to design a 
study to have sufficient power to detect any 
genes with effects exceeding a given mag- 
nitude. For example, one can calculate the 
number of sib vairs reauired to use allele- 
sharing methods to detect a locus that in- 
creases the relative risk to siblings by at 
least twofold (32, 82, 136). However, even 
if the overall relative risk to siblings is large, 
there is no guarantee that there exists any 
individual locus having an effect of this 
magnitude. Similarly, one can calculate the 
number of progeny needed to detect a QTL 
accounting for 10% of the phenotypic vari- 
ance of a trait, but predicting whether any 
such loci will be Dresent is ~ossible onlv 
under very favorable circumstances (137). 
Genetic analvses of com~lex traits should 
always explicitly report the minimum effect 
that could have been reliablv detected eiv- - 
en the subjects studied. 

The optimal choice of which families or 
crosses to study may also vary with the 
circumstances. For human studies, the 
range of choices include whether to focus 
on individuals with extreme phenotypes, 
when to extend a pedigree, and whether to 
prefer or to exclude families with too many 
affected individuals (1 37). For animal stud- 
ies, the issues include whether to set up a 
backcross or intercross and whether to con- 
centrate on the progeny with the most ex- 
treme ~ h e n o t v ~ e s  (47. 138). 

, L  . . 
 he optimal density of genetic markers 

is a topic requiring more attention. The 
effect of polymorphism rate on the power of 
allele-sharing methods has been studied for 
single markers (33, 95, 136, 139), but not 
for the more realistic situation of multipoint 
mapping. It is clear that denser maps are 
needed for the study of sib pairs without 
available Darents or for the studv of more 
distant relatives, but quantitative guidance 
is lacking. The effect of marker density on 
experimental crosses has been more exten- 
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sively studied (47, 140). Finally, a few au- 
thors have begun to explore two-tiered 
strategies, in which initial evidence is ob- 
tained with a sparse map and then con- 
firmed with a dense map (141 ). 

Cloning Genes That Underlie 
Complex Traits 

Once genetic dissection implicates a chro- 
mosomal region, there remains the formida- 
ble task of identifying the responsible gene. 
That type I diabetes cosegregates with 
anonymous markers on chromosome 1 l q  in 
the human or that hypertension cosegre- 
gates with the ACE gene in rat crosses 
simply indicates that a causative gene lies 
somewhere nearby. However, the possible 
region might be as large as 10 to 20 M b -  
enough to contain 500 genes. Positional 
cloning requires higher resolution mapping 
to narrow the search to a tractable region. 

For a s i m ~ l e  Mendelian trait. the situa- 
tion is most favorable. Because the respon- 
sible gene must show perfect cosegregation 
with the trait, even a single crossover suf- 
fices to eliminate a region from consider- 
ation. From a study of 200 meioses, the 
interval can be pared to about 1 cM, corre- 
sponding to about 1 Mb (142). Still, the 
challenge is considerable. It is sobering to 
note that virtuallv all successful ~osi t ional  
cloning efforts have depended on the fortu- 
itous Dresence of chromosomal abberra- 
tions, trinucleotide repeat expansions, or 
previously known candidate genes. Only 
two human disease genes have been posi- 
tionally cloned solely on the basis of point 
mutations: cystic fibrosis and diastrophic 
dysplasia (DTD) (143). 

For complex traits, positional cloning 
will likely be even harder. Because cosegre- 
gation is not expected to be perfect, single 
crossovers no longer suffice for fine-struc- 
ture mapping. Resolution becomes a statis- 
tical matter (144). For a gene conferring a 
relative risk of twofold, for exam~le ,  one 
would need to examine a median n;mber of 
nearly 600 sib pairs to narrow the likely 
region (95% confidence interval) to 1 cM. 
Moreover, the genes underlying complex 
traits may be subtle missense mutations 
rather than gross deletions. How will posi- 
tional cloners overcome these obstacles? 

In the human, the most powerful strate- 
gy may prove to be linkage disequilibrium 
mapping in genetically isolated populations 
(21, 145). The idea is to  find manv affected 
individuals who have inherited ;he same 
disease-causing allele from a common an- 
cestor. Such individuals will tend to have 
retained the particular pattern of alleles 
present on the ancestral chromosome, with 
the immediate vicinity of the gene being 
evident as the reeion of maximal retention. u 

In effect, the method exploits information 

from many historical meioses and thereby 
affords much higher recombinational reso- 
lution. Fine-structure linkage disequilibri- 
um mapping has been applied to the isolat- 
ed Finnish population (founded about 100 
generations ago) to permit the cloning of 
the DTD gene (143). Whereas convention- 
al recombinational mapping was only able 
to localize the gene to within about 1.5 cM, 
linkage disequilibrium studies were able to 
pinpoint it to  within about 50 kb. The 
approach is also applicable to younger pop- 
ulations: linkage disequilibrium should be 
detectable over larger distances, although 
the ultimate resolving power will be less 
(146). Elegant studies in the Mennonite 
population (founded about 10 generations 
ago) have allowed initial mapping of genes 
involved in a recessive form of Hirsch- 
sprung disease (20). 

In animal models, fine-structure map- 
ping of factors such as QTLs can be accom- 
plished through appropriate breeding. The 
key is to ensure unambiguous genotyping at 
the trait-causing locus. The best solution is 
probably to (i) create congenic strains dif- 
fering only in the region of interest, (ii) 
cross these strains to construct recombinant 
chromosomes (that is, ones in which there 
has been a crossover between flanking ge- 
netic markers), and (iii) evaluate each re- 
combinant chromosome to determine 
which trait-causing allele is carried by per- 
forming progeny testing (that is, examining 
the phenotype of many progeny carrying 
the chromosome) (1 13). The construction 
of the required congenic strains would tra- 
ditionally require 20 generations of breed- 
ing. With the advent of complete genetic 
linkage maps, however, one can construct 
"speed congenics" in only three to four 
generations by using marker-directed breed- 
ing (147). 
u .  

The Human Genome Project promises 
to make a tremendous contribution to the 
positional cloning of complex traits by 
eventually providing a complete catalog of 
all genes in a relevant region. With such 
information, positional cloning will be re- 
duced to the systematic evaluation of can- 
didate genes-still challenging, but far more 
manageable than today's more haphazard for- 
ays. Indeed, the Human Genome Project is 
essential if the genetic analysis of complex 
traits is to achieve its full potential. 

Finallv. candidate genes, whether iden- , . - .  
tified by positional cloning or guessed a 
priori, must always be subjected to rigorous 
evaluation before they are accepted. The 
gold-standard tests for human genes should 
include association studies demonstrating a 
clear correlation between functionally rele- 
vant allelic variations and the risk of disease 
in humans, and transgenic studies demon- 
strating that gene addition or gene knock- 
out in animals produces a phenotypic effect. 

For genes identified from experimental an- 
imal crosses, one can and should go a step 
further by demonstrating that an induced 
knockout allele at the candidate eene fails 

u 

to  complement an  allele at the locus to be 
cloned ( 148). 

Conclusion 

In the early 1900s, the fledgling theory of 
Mendelian genetics was attacked on the 
grounds that the simple, discrete inheri- 
tance patterns of pea shape or Drosophila 
eye color did not apply to the variation 
typically seen in nature (149). After 20 
years of acrimonious battle, the issue was 
eventually resolved with the theoretical un- 
derstanding that Mendelian factors could 
give rise to complex and continuous traits, 
even if direct identification of the genes 
themselves was not practical. Now, with 
the advent of dense genetic linkage maps, 
geneticists are taking up the challenge of 
the genetic dissection of complex traits. If 
they are successful, the tools of genetics will 
be brought to bear on some of the most 
important problems in human health and in 
agriculture, and the Mendelian revolution 
will finally be complete. 
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