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In the new PheBo-System the protein of
interestis cloned nexttothe |eac£>r protein
B3-lactamase. The expressed fusion
protein remains in the cytoplasm (vectors

HKcyto) or is released info the periplasm
pHKperi). B-lactamase allows efﬁcient
protein purification on re-usable PheBo-
affinity-columns. The leader protein is
cutoff by the site-specific Endoproteinase
Pro-Pro-Y-Pro (Igase), which afso cleaves
inclusion bodies. A second passage
through the same column yields the pure
protein of interest (3-lactamase and the
endoproteinase remain on the column).

dvantages:
o efficient cleavage and purification
of the fusion protein
® secretion into the periplasm possible
* also Endoproteinase Pro-Pro-Y-Pro
remains on the PheBo-column
¢ cleavage of inclusion bodies
e complete system with all protocols
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al., ibid., p. 173; R. Waterston et al., ibid. 1, 114
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help@ncbi.nim.nih.gov. For information on submitting
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Adaptive Mutation

The report “Recombination in adaptive
mutation” by Reuben S. Harris et al. (8
Apr., p. 258) demonstrates the role of bio-
chemical machinery for homologous recom-
bination in adaptive reversion of a lacZ
gene frameshift mutation. The accompany-
ing Perspective by David S. Thaler “The
evolution of genetic intelligence” (p. 224)
describes the flow of information between
the environment, the cellular activities that
can reorganize DNA molecules, and the
genome.

Our knowledge of the cellular basis of
mutation was revolutionized by Barbara
McClintock’s discovery of transposable ele-
ments in maize and her demonstration of
their ability to generate chromosome rear-
rangements and new alleles at individual
genetic loci (1). An early example of adap-
tive mutation in bacteria involved the abil-
ity of a transposable element, phage Mu, to
form araB-lacZ hybrid protein coding se-
quences with kinetics that were incompat-
ible with the Luria-Delbruck concept of
stochastic mutation (2). The importance of
transposable elements has been relatively
neglected in the debate about adaptive mu-
tation because point mutations have been
considered to be more relevant to evolu-
tionary change. Examination of sequence
databases, however, has shown that cut-
and-splice processes must have been a part
of the evolution of loci encoding multi-
domain proteins and of 5' regulatory re-
gions, which are mosaic composites of many
repetitive elements that specify the binding
of transcription factors. As transposable el-
ements encode precisely the kind of cleav-
age and ligation activities that can mediate
the required DNA rearrangements, and as
their movements frequently create new reg-
ulatory configurations, their functions
could serve as models for certain evolution-
ary processes.

The basic similarity between the role of
transposable elements in mediating DNA




~ rearrangements and the results of the report

by Harris et al. is that both classes of phys-

iologically sensitive genetic changes in-

volve the action of biochemical complexes

whose functions are to restructure DNA

sequences. These natural genetic engineer-

ing systems are subject to cellular control

regimes in the same way as are any other set

of biochemical activities (3), thus, many

important mechanisms of genetic change

properly belong in the regulatory context of

cell biology rather than in the statistical
context of physics and chemistry.

James A. Shapiro
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Thaler points out that an important step in
the understanding of the phenomenon
known as “adaptive mutation” is the real-
ization that, during selection, mutations oc-
cur by a different mechanism than they do
in the absence of selection. Several years
ago, John Cairns and 1 discovered that
adaptive reversion of a frameshift allele of
the lacZ gene requires a functional recA
gene, whereas reversion occurring during
normal growth does not (1). Thaler does
not mention that our experiments also
showed that adaptive mutation does not
require activities known to be involved in
SOS (the DNA damage repair response), a
result that eliminated the known functions
of RecA other than those involved in re-
combination (1, 2).

The report by Harris et al. specifically
implicates the RecBC pathway of recombi-
nation by demonstrating an additional re-
quirement for RecBC. Because RecBC is
known to interact with duplex DNA ends,
these results appear to exclude the hypoth-
esis that adaptive reversion of this lac allele
occurs during DNA synthesis primed by
RNA:DNA hybrids (3). But the results do
not distinguish between the alternative hy-
potheses that the mutations are created by
RecA-dependent recombination per se, or
that the mutations occur during DNA syn-
thesis primed by RecA-dependent homolo-
gous pairing. Indeed, the priming of DNA
synthesis by D-loops is a stress-induced re-
sponse in Escherichia coli (4).

It should also be noted that the require-
ment for RecA function is not universal.
Harris et al. used the same bacterial strain
that we used (I). Although Jayaraman (5)
also reported a requirement for RecA for
adaptive mutation of a different mutational

target, there are examples of mutations that
occur under selective conditions in the ab-
sence of RecA, including reversion of other
lac™ alleles and of amino acid auxotrophies
(2, 6). But, in order for mutations to arise in
nondividing cells, there may be a universal
requirement for special ways to initiate
DNA synthesis, of which the RecA-depen-
dent mechanism may be just one example.
Patricia L. Foster

Boston University School of Public Health,
Boston University School of Medicine,
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Boston, MA 02118, USA
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Response: In her 1983 Nobel lecture (1),
Barbara McClintock said,

A goal for the future would be to determine the
extent of knowledge the cell has of itself and how
it utilizes this knowledge in a “thoughtful” man-
ner when challenged.

e | ETTERS

Shapiro (2), in the discussion of his 1984
paper, pointed out that the experiments by
S. E. Luria and M. Delbruck (3), H. New-
comb (4), and J. Lederberg and E. M. Led-
erberg (5) involved immediately lethal se-
lection and could only detect mutants that
had originated in the absence of selection.
He ended this important paper with the
statement,

Indeed, now that we know about mobile genetic
elements, inducible mutator systems and multi-
ple biochemical activities that reorganize DNA
molecules, the most pertinent questions in stud-
ies of hereditary change must be questions of
control and regulation.

F. W. Stahl (6) has pointed out that the
distinction between lethal and nonlethal
selections was carefully made by Delbruck
in 1946 in a comment on selection for
carbon source utilization. Mutation under
nonlethal selection and its deviation from
Luria-Delbruck kinetics was the subject of
extensive experimental work by Francis
Ryan in the late 1950s and has been recent-
ly reviewed (7).

The special contribution of John Cairns
and his colleagues (8) is that the distinction
between generalized stress responses and
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