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agonists have suggested that activation of 
5-HT1B receptors might lead to an increase 
in anxiety and locomotion and to a de­
crease in food intake, sexual activity, and 
aggressive behavior (5). The consequences 
of a blockade of 5-HT1B receptors or of their 
human counterpart are unknown because 
there are no specific antagonists for these 
receptors. 

To study the function of the 5-HT1B 

receptor, we have generated by homologous 
recombination in embryonic stem (ES) 
cells homozygous mutant mice lacking both 
copies of the gene encoding the 5-HT1B 

receptor (6, 7). Four positive ES cell clones 
were obtained with both the J A and the JB 
targeting vectors (Fig. 1 and Table 1). 
Southern (DNA) blot analyses with Xba I 
digests and the E2A1 probe or the neo probe 
confirmed that accurate targeting occurred 
and that no additional integration took 
place. Cells from the positive clones JA7 
and JB13 were microinjected into 3.5-day 
C57BL/6 mouse blastocysts. The two clones 
gave rise to highly chimeric mice, which 
were bred with C57BL/6 females to test for 
germline transmission of the mutated 
5-HT1B receptor gene. The positive chime­
ras were bred with females from the 129/Sv-
ter inbred strain to obtain heterozygotes on 
the 129/Sv-ter genetic background. Ho­
mozygous animals were generated by het-
erozygote crossings, and the expected 1:2:1 
ratio of wild-type (WT), heterozygous, and 
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homozygous mutant progeny was observed 
(Table 1). 

To  verify the disruption of the 5-HT,, 
receptor gene, we performed autoradiogra- 
phy (8) on brains of WT, heterozygous, and 
homozygous mutants with 1251-labeled cya- 
nopindolol (1251-CYP). When used in the 
presence of appropriate masking agents, this 
radioligand binds specifically to the 5-HT,, 
receptor (3, 4). In WT mice, 1251-CYP 
binding sites were found in the globus pal- 
lidus, substantia nigra, cerebellar nuclei, 
subiculum, lateral geniculate nucleus, cen- 
tral gray, and colliculi (Fig. 2, A and B), 
whereas no specific binding was observed in 
homozygous mutants (Fig. 2, C to E). Het- 
erozygous mice displayed the same number 
of binding sites as WT mice (Fig. 2E). The 
same results were obtained with another 
5-HT,, radioligand (9). Thus, we effective- 
ly disrupted the 5-HT,, gene. 

The activity of the mice was analyzed in 
an open field (1 0). No significant differenc- 
es were detected between the mutant mice 
and their WT littermates (Fig. 3). Admin- 
istration of the 5-HT, agonist RU24969 
stimulated locomotor activity in the WT 
mice but had no effect in the mutants (Fig. 
3). These results suggest that the hyperlo- 
comotor effect of RU24969 is mediated by 
5-HT,, receptors, which is in good agree- 
ment with pharmacological studies ( I  I). 
However, we cannot rule out the possibility 
that compensatory mechanisms are respon- 
sible for the lack of effect of RU24969 in 
the mutants. For example, the 5-HT,, re- 
ceptor, which has a high affinity for 
RU24969 and a hypolocomotor activity 
(5), might have been down-regulated. 
However, preliminary results indicate that 
the number of 5-HT,, receptors is the same 
in mutant and WT mice (9). 

A class of 5-HT, agonists, including el- 
toprazine and fluprazine, have been termed 
serenics because of their antiaggressive 
properties (12), and their effects have been 
suggested to be mediated by 5-HT,, recep- 
tors. We therefore investigated the aggres- 
siveness of mice lacking 5-HT,, receptors 
(5-HTlBP mice). After an isolation period 
of 4 weeks, test mice (resident) were ana- 
lyzed for intermale aggression after exposure 
to a WT mouse that had been reared in a 
group (intruder) (13). In this test, the la- 
tency of attack and the number of attacks 
performed by the resident during a 3-min 
period were used as indices of aggression. 
The mutant residents attacked the intruder 
faster than the WT or heterozygous resi- 
dents (Fig. 4A). Furthermore, the number 
of attacks in the mutant group was signifi- 
cantly higher than in the WT or heterozy- 
gote groups (Fig. 4B). In addition, the in- 
tensity of attacks of the mutant residents 
was higher, as well as the number of tail 
rattlings preceding the attacks. Similar re- 
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Fig. 1. Homologous recombination at the 5-HT,, locus: targeting event with JA (A) and JB (B) constructs 
(7). (Upper panels) Targeting vectors, genomic structure of the 5-HT,, gene, and predicted structures 
of the mutated alleles after homologous recombination. Black box, coding sequence of the 5-HT,, 
receptor, which consists of a single exon; hatched box, neo cassette; arrows, direction of transcription. 
E2A1 and EX400 probes were used to screen neomycin-resistant clones after Xba I and Kpn I digests, 
respectively. (Bottom panels) Southern blot analysis. DNA from the tails of WT, heterozygous, and 
homozygous JA7 (A) and JB13 (B) mutant mice were digested with Kpn I and hybridized with the EX400 
probe. E, Eco RI; B, Bal I ;  X, Xba I ;  K, Kpn I ;  V, Eco RV; +/+, VVT; +/-, heterozygote; and -/-, 
homozygote. 

Fig. 2. 5-HT,, receptor autora- 
diography in WT and mutant mice. 
1251-cyanopindolol (1251-CYP) was 
used to label 5-HT,, receptors in 
horizontal brain sections of 12- 
week-old male mice (8). (A) and (B) 
correspond to successively more 
dorsal brain sections of WT mice, 
and (C) and (D) are the correspond- 
ing sections from homozygous mu- 
tant mice. CG, central gray; CN, 
cerebellar nuclei; CPu, caudate pu- 
tamen; GP, globus pallidus; LG, lat- 
era1 geniculate nucleus; S, subicu- 
lum; SN, substantia nigra. (E) Den- 
sity of 1251-CYP binding sites (mean 
5 SEM; n = 3) in dierent brain 
regions for WT (open bars), het- 
erozygous (stippled bars), and ho- 
mozygous mutant mice (solid bars). 
A t test revealed no difference be- 
tween WT and heterozygous mice, 
and between mutant mice and non- 
specific binding (hatched bars). The 
differences were significant be- 
tween mutant and WT and between 
mutant and heterozygous mice in 
all brain regions tested (*'P < 
0.001). The mice used in this exper- 
iment were derived from the JA7 
cells, but the same results were ob- 
tained with mice derived from the 
JB13 cells. 

Substantia Globus Subiculurn 
nigra pallidus 
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sults were obtained in two tests performed 1 
week apart. The level of aggressiveness was 
higher in the second test with both the WT 
and the mutant animals, consistent with 
reports showing that aggression increases 
with fighting experience (14). A qualitative 
analysis of the attacks during the 3-min test 
revealed additional marked differences be- 
tween WT and mutant mice (Fig. 5). In the 
first test, 29% of the mutant residents at- 
tacked the intruder within less than 10 s 
after introduction of the intruder in the 
cage, whereas no W T  or heterozygous mice 
attacked the intruder during that time in- 
terval. Conversely, 75% of the WT mice 
and only 21% of the mutants did not attack 
during the 3-min test. In the second test, 
the percentage of mutants displaying short- 
latency attacks was even higher (46%), 
whereas no WT animals performed such 
attacks. These results indicate that the 

Table 1. Homologous recombination of 5-HT,, 
gene. Analysis of the recombination events and 
generation of homozygote mutant mice. GLT, 
germline transmission. 

Targeting vector JA JB 

Length of homology (kb) 
Neomycin-resistant colonies 
Positive colonies 
Positive colony used 
Chimeric males 
Chimeric males analyzed 
GLT chimeric males 
Offspring from heterozygote 

crosses 
Total 
+/+ 
+/- 
-1- 

- 
Control RU24969 

Fig. 3. Locomotor activity of the mutant mice in an 
open field (1 0). The bars on the left correspond to 
the locomotor activity (mean ? SEM) in control 
conditions of WT (n = 12) and mutant mice (n = 
lo), and the bars on the right to the effect of 
RU24969 injected in the same mice 10 days after 
the first test. There was no significant difference 
between the WT and the mutant mice in control 
conditions {t test; [t ,, = 0.22; not significant 
(NS)]). After RU24969 treatment there was a sig- 
nificant difference between the two groups: [t ,?, 
= 4.18; ***P < 0.0011. Open bars, WT mice; solld 
bars, homozygous mutant mice. 

5-HTIB- mice are more aggressive and pos- 
sibly more impulsive than their WT or het- 
erozygous littermates. 

We analyzed two behaviors that have 
been postulated to be modulated by 5-HTIB 
receptors-locomotion and aggression (1 I ,  
12). No differences were detected in basal 
locomotor activity between the W T  and 
mutant mice, although the hyperlocomotor 
effect of the 5-HT, agonist RU24969 was 
absent in the mutants. The absence of an 
alteration in locomotor activity suggests ei- 
ther that compensatory mechanisms oc- 
curred during development or, altemative- 
ly, that in normal, "baseline" conditions, 
the 5-HTIB receptor is not activated. The 
results of the aggression test are consistent 
with the notion that 5-HTIB receptors may 
be activated in response to environmental 
changes, such as stressful situations. When 
the mutants are housed as a group they are 
not more aggressive than W T  mice. How- 
ever, after a month of isolation and in the 
presence of an intruder, the mutants are 
significantly more aggressive than the W T  
mice. 

Several studies have revealed an associ- 
ation between aggressive behavior and a 
reduction in the activitv of the serotonergic - 
system. In rodents and primates, aggressive- 
ness is increased after inhibition of sero- 
tonin synthesis (1 5) or destruction of sero- 
tonergic neurons (16). Mouse strains that 
display increased aggressiveness have low 
brain serotonin concentrations (1 7). In hu- 
mans, impulsive aggressive behaviors have 
been associated with a deficit in central 
serotonin (18). Low serotonergic activity 
might result in a decreased activation of 
certain serotonin receptors, including the 
5-HT,, receptors, and might therefore pro- 
duce an effect that is similar to the pheno- 
type of the 5-HTIB- mice. 

The increased aggressiveness of 
5-HTIB- mice might also be related to the 
fact that a family of 5-HTIB agonists termed 
serenics have antiaggressive properties (1 2). 
These compounds 'decrease aggressive be- 
havior in several animal models, including 
isolation-induced aggression in mice, resi- 
dent-intruder aggression in rats, and mater- 
nal aggression in rats. Our results suggest 

Fig. 4. Resident-intruder aggression A B 
test (73). Resident mice were WT (n 200 A 
= 12), heterozygotes (n = 16), and 
mutant mice (n = 14). (A) Attack la- 
tency (mean ? SEM): time between 
the the ysis first ~ntroduct~on of attack variance by of the (ANOVA) the resident. ~ntruder revealed Anal- and i15h,gi:]ji 5 a 100 

significant differences for the attack 2 latency both in the first test [F,,,, = - 
5.38, P < 0.011 and in the second ' 50 z 2.5 

test [F,,,,, = 3.49, P < 0.051. Further 
statistical analyses revealed signifi- 0 cant differences between WT and First Second F~rst Second 
mutant mice (first test, [t ,,,, = 3.19, test test test test 
P < 0.011; second test, [t .,) = 2.38, 
P < 0.05]), heterozygotes and mutant mice (first test, [t (2q = 2.1 7,  P < 0.051; second test, [t (2q = 2.26, 
P < 0.05]), but not between WT and heterozygous mice (first test, [t (2q = 1 .lo, NS]; second test, [t (,, 
= 0.01, NS]). (B) Number of attacks (mean + SEM) during the session. ANOVA: (first test, [F(2,3g) = 7.39, 
P < 0.011; second test, [F(,,,, = 4.48, P < 0.021). t tests: WT versus mutants (first test, [t (,,, = 3.19, P 
< 0.011; second test, [t,, = 2.32, P < 0.05]), heterozygotes versus mutants (first test, [t (,. = 2.1 6, P < 
0.051; second test, [t ,, = 2.44, P < 0.05]), WT versus heterozygotes (first test, [t (2q = 1.72, NS]; 
second test, [t (,,, = 0.99, NS]). *P < 0.05; **P < 0.01. Open bars, WT mice; stippled bars, heterozygote 
mice; solid bars, homozygous mutant mice. 

First test Second test 

Fig. 5. Resident-intruder aggression test: scatter plot of attack latencies. The data correspond to the 
experiment presented in Fig. 4. -/-, homozygous mutant mice; -/+, heterozygous mice; +/+, WT 
mice. Attack latencies are expressed in seconds (0 to 180). Each small circle corresponds to one animal. 
Circle sizes are proportional to the number of animals displaying the same attack latency. 
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that the 5-HTIR receptor is at least in part 
responsible for the antiaggressive properties 
of the serenics, but do not rule out a par- 
ticipation of other receptors with a high 
affinity for these compounds, such as the 
5-HT,, receptor. The antiaggressive prop- 
erties of the serenics are not affected bv 
serotonin depletions and are therefore most 
likely mediated by postsynaptic receptors 
(19). 5-HTlB receptors are expressed in a 
variety of brain structures, but predomi- 
nantly on the terminals of projecting neu- 
rons where they often inhibit transmitter 
release (3). Candidate structures could be 
the amygdala and the central gray, which 
express 5-HTlB mRNA and 5-HT,R bind- 
ing sites, respectively (3, 4) ,  and which are 
two regions involved in the response to fear 
and defensive behaviors (20). 
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Mediation of Hippocampal Mossy Fiber 
Long-Term Potentiation by Cyclic AMP 

Marc G. Weisskopf, Pablo E. Castillo, Robert A. Zalutsky, 
Roger A. Nicoll* 

Repetitive activation of hippocampal mossy fibers evokes a long-term potentiation (LTP) 
of synaptic responses in pyramidal cells in theCA3 region that is independent of N-methyl- 
D-aspartate receptor activation. Previous results suggest that the site for both the in- 
duction and expression of this form of LTP is presynaptic. Experimental elevation of cyclic 
adenosine 3',5'-monophosphate (CAMP) both mimics and interferes with tetanus-in- 
duced mossy fiber LTP, and blockers of the CAMP cascade block mossy fiber LTP. It is 
proposed that calcium entry into the presynaptic terminal may activate Ca2+-calmodulin- 
sensitive adenylyl cyclase I which, through protein kinase A, causes a persistent en- 
hancement of evoked glutamate release. 

Long-lasting modifications of the strength system. This use-dependent synaptic plas- 
of synaptic signals after repetitive stimula- ticity provides a possible cellular basis for 
tion of synapses is a common property of many types of learning and memory. One of 
excitatory synapses in the central nervous the most studied forms of synaptic plasticity 

is LTP, which in most cases requires the 
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941 43-0450. USA. partate (NMDA) glutamate receptors (1). 
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