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Control of Thalamocortical Afferent 
Rearrangement by Postsynaptic Activity in 

Developing Visual Cortex 
Yoshio Hata and Michael P. Stryker* 

The formation of specific connections in the developing central nervous system is thought 
to result from mechanisms that increase the strengths of synapses at which pre- and 
postsynaptic activity are correlated and decrease it otherwise. In the visual cortex, initially 
widespread inputs normally sort out into eye-specific patches during early life. If only one 
eye can see during this period, its patches are much larger than normal, and patches from 
the occluded eye become much smaller. Anatomical experiments here show that closed- 
eye inputs expand within a region of cortex that is silenced, establishing that inhibition 
of common target cells gives less active inputs a competitive advantage. 

Ocular  dominance columns (alternate 
patches of visual cortex that receive input 
from the two eyes) form in normal devel- 
opment by a selective loss of the initially 
widespread and overlapping branches of the 
geniculocortical afferents and the selective 
growth of new arbor in territory dominated 
by one eye or the other (1 ) .  During this 
period of segregation, cortical neurons and 
their input afferents show dramatic plastic- 
ity in response to changes in the visual 
environment ( 2 ) .  Closing the lid of one eye 
during this period in early postnatal life 
causes most visual cortical neurons to lose 
response to the deprived eye and respond 
instead exclusively to the nondeprived eye 
(3). Such monocular deprivation also caus- 

es an anatomical expansion of the cortical 
territory into which geniculocortical affer- 
ents carrying information from the nonde- 
prived eye terminate, as well as a comple- 
mentary shrinkage of territory serving the 
deprived eye (4). 

Experiments in which neural activity in 
visual cortex was suppressed by the sodium 
channel blocker tetrodotoxin demonstrated 
that ocular dominance plasticity requires neu- 
ral activitv in the cortex (5). Furthermore, , , 

microelecirode experiments indicated that 
the suppression of postsynaptic visual cortical 
activity by cortical infusion with the y-am- 
nobutyric acid type A (GABA,)-receptor 
agonist muscimol during the period of mo- 
nocular deprivation shifted ocular domi- 
nance toward the deprived eye (6). This 
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mally operate during development or was, 
instead, a pharmacological curiosity. Be- 
cause the formation of cortical columns in 
normal develo~ment ultimatelv involves 
anatomical plasticity, the present study 
aimed to determine whether the pharmaco- 
logical control of postsynaptic activity also 
controlled the anatomical rearrangements 
of presynaptic geniculocortical afferents. 
For this purpose, we labeled geniculocorti- 
cal afferent termination in regions of layer 
IV of the visual cortex in which postsynap- 
tic activity was inhibited during the period 
of monocular deprivation, and we compared 
the patterns of labeling with those in the 
control cortex. 

Postsynaptic activity in one hemisphere 
of the primary visual cortex of 4-week-old 
kittens was inhibited by infusing the cortex 
with muscimol solution. Four weeks is mid- 
way through the process of ocular domi- 
nance column segregation. Two days after 
starting the infusion, kittens were deprived 
of vision in the contralateral eve bv evelid , , ,  
suture. Geniculocortical afferent termina- 
tion in the visual cortex was labeled bv 
transneuronal transport of [3H]proline, 
which was iniected into one eve (7 ) .  In , . .  
normal older animals, the patches of cortex 
labeled transneuronally were almost pre- 
cisely complementary, which allows one to 
infer the distribution of the unlabeled eye's 
inputs in experimental material (Fig. 1). 
After 2 or 4 weeks of muscimol infusion, the 
region inactivated by muscimol was delin- 
eated physiologically by mapping the activ- 
ity of cortical cells with microelectrodes 
(Fig. 2A). Drug infusion was then stopped, 
and the ucular dorni~lance of cortical cells 
was determined after the effects of musci- 
mol had subsided (8). Thereafter, the ani- 
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ma1 was perfused and the tissue was pro- 
cessed to show ocular dominance columns 
by conventional autoradiography (9, 10). 

After 4 weeks of monocular deprivation 
during which the spike activity of cortical 
cells was suppressed by muscimol, the ocular 
dominance of visual cortical cells had shift- 
ed in favor of the closed eye within the 

inactivated area (Fig. 2B). Injection of 
[3H]proline revealed clear transneuronal la- 
beling in layer IV of the primary visual 
cortex in both muscimol-treated and con- 
trol hemispheres (Fig. 3A). However, the 
pattern of labeling was quite different be- 
tween these two hemispheres. In the con- 
trol hemisphere, as reported (4), the label- 

(dH]Prdine 
in contra gce 

WUA-HHP 
in ipsi eye 

Fig. 1. Ocular dominance columns in normal visual cortex. Different transneuronal tracers, [3H]proline and 
wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP), were injected into the two 
eyes of a 7-week-old kitten. Alternate sections of flattened cortex were processed for conventional 
autoradiography and the 3,3',5,5'-tetramethylbenzidine reaction to visualize the geniculocortical afferent 
termination serving the two eyes. A pair of neighboring sections showing contralateral (contra) eye 
columns ([3H]proline, above left, red) and ipsilateral (ipsi) eye columns ( WGA-HRP, above right, green) are 
superimposed below to show their complementary pattern. L, lateral; A, anterior; M, medial; P, posterior. 

Fig. 2. Ocular dominance shift to- 
ward the closed eye in the cortex 
after long-term treatment with mus- 
cimol. (A) Schematic illustrating ex- 
perimental procedures. (B) Ocular 
dominance histograms compiled 
from single-unit responses record- 
ed in area 17. Results are plotted as 
if the eyelid suture was always ipsi- 
lateral to the hemisphere in which 
the recording was made. That is, 
ocular dominance of 1 indicates a 
cell driven exclusively by the open 
eye, and ocular dominance of 7 in- 
dicates a cell driven exclusively by 
the closed eye. Cells in category UR 
showed no visual responses. The 
upper histogram was compiled 
from responses recorded (total n = 
226; UR, n = 7) within the musci- 
mot-inactivated area of four kittens 

80 1 Within inactivated area 

Monocular n 
f+tprolme deprivation 

Experimental Control 
hemisphere hemkphere 

in which the visual cortex had been Ocular dominmea 
infused with muscimol solution for 4 Open eye Closed eye 
weeks. The lower histogram was 
compiled from responses (total n = 135; UR, n = 0) in the control hemisphere of the same four kittens. 

ing was nearly continuous except for narrow 
gaps, which reflected the expansion of the 
cortical territory within which the genicu- 
locortical afferents serving the open eye 
terminate. In contrast, labeling in the mus- 
cimol-treated hemisphere showed clear pe- 
riodic fluctuations of density. This result 
indicates that the exwansion of the afferent 
termination of the open eye was prevented 
in the muscimol-treated cortex. 

To reveal the columnar organization of 
afferent termination over a larger area, we 
flattened the occipital cortex region from 
five animals. Two flattened cortices of a 
kitten in which [3H]proline was injected 
into the open eye ( I  1) is shown in Fig. 3B. 
In a manner similar to that in Fie. 3A. the - ,  

labeling was almost confluent over most of 
the visual cortex in the control hemisphere, 
indicating the expansion of cortical territo- 
ry for the open eye. In contrast, in the 
region around the cannula in the muscimol- 
treated hemisphere, the labeled area formed 
small discrete patches separated by unla- 
beled gaps that were larger in size, whereas 
in the anterior and posterior regions of the 
cortex far from the cannula, the labeled 
patches were much thicker than the unla- 
beled gaps and were often confluent. Two 
flattened cortices from a kitten in a com- 
plementary experiment in which I3HIpro- 
line was injected into the closed eye are 
shown in Fie. 3C. In the control hemi- 
sphere, labeling formed small discrete 
patches as reported (4), which demonstrates 
that the cortical territory for the closed eye 
had been reduced. However, in the musci- 
mol-treated cortex, the labeled patches 
were more prominent than the unlabeled 
gaps in the region around the cannula, re- 
vealing that the cortical territory for the 
closed eye had expanded. This expansion of 
the closed eye territory in the muscimol- 
treated cortex was found only in the region 
around the cannula. Far from the cannula 
(for example, the posterior part of the cor- 
tex in Fig. 3C, left), in the region in which 
the activity of cells had not been inhibited 
by muscimol, the labeling resembled that in 
the control hemisphere. 

Although physically flattening the cor- 
tex reveals the overall pattern of labeling, 
flattening is always accompanied by a risk of 
distortion. To exclude this potential arti- 
fact, we explored the labeling pattern in 
sagittal sections of the visual cortex in three 
animals. Photomontages showing the medi- 
al bank of the muscimol-treated and the 
control hemispheres of two kittens in which 
[3H]proline was injected into the open or 
the closed eye are shown in Fig. 4. The 
patterns of labeling were similar to those 
observed in the flattened cortex. 

Measurements of the fraction of cortical 
territory occupied by afferents from the la- 
beled eyes confirmed the visual impressions 
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described above. In two muscimol-treated 
hemispheres in which the closed (contralat- 
eral) eye was injected, the area occupied by 
labeled afferents was 81 and 82% near the 
cannula, but 33 and 36% far from the can- 
nula. Both of these are out of the range of - 
similar measurements, 57 and 50%, in two 
hemis~heres from normal kittens in which 
the contralateral eye was labeled. In five 
muscimol-treated hemispheres in which the 

open (ipsilateral) eye was labeled, the me- 
dian area occupied was 43% near the can- 
nula and 80% far from the cannula, whereas 
in four hemispheres from normal kittens, a 
median of 46% ipsilateral label was mea- 
sured. During the period of afferent segre- 
gation, the cortical territory covered by 
each eye's afferents shrinks (1,4). Open-eye 
afferent territory in the area near the can- 
nula also shrank, but not significantly more 

Fig. 3. Geniculocortical afferent termination in the muscimol-treated cortex (left) and in the control cortex 
(right). (A) Examples of horizontal sections obtained from a kitten in which the open eye was labeled with 
[3H]proline. The bright area reveals the autoradiographic label. Scale bar, 1 mm. (B and C) Photomon- 
tages of labeling in layer IV made from sections of flattened cortex of two kittens in which the open eye (B) 
or closed eye (C) was labeled. Scale bar, 5 mm. In the left panels of (A) to (C), the * indicates the position 
of the cannula that infused the muscimol solution. In (B), the large blackarea without labeling in the control 
hemisphere is a region that was not flattened successfully. 

Fig. 4. Surface view of Musdrnd 
geniculocortical afferent 'A fl Cannula 
termination in the medial 
bank. Photomontages of 
labeling in layer IV were 
made from sagittal sec- 
tions obtained from kit- 
tens in which the open 
eye (A) or closed eye 
(B) was labeled. Scale . -- 

bar, 5 mm. D, dorsal; A, 
anterior; V, ventral; P, 
posterior. 

0 Cannula - 

than normal. Closed-eye afferent territory 
near the cannula had clearly expanded and 
resembled open-eye afferent territory in the 
area far from the cannula. 

The observation that the labeling showed 
a different pattern on the cortex depending 
on the distance from the cannula infusing 
muscimol strongly suggests that the rearrange- 
ment of geniculocortical afferents was modi- 
fied in response to the effective concentration 
of muscimol. If so, one expects a monotonic 
relation between the size of the inactivated 
area determined by mapping and the size of 
the cortical area where the rearrangement of 
afferents was reversed. In three animals. the 
distances from the cannula of the borders of 
physiologically inactivated areas and the areas 
showing reverse anatomical plasticity were (i) 
5 mm physiology and 2 mm anatomy, (ii) 7 
mm and 5 mm, and (iii) 10 mm and 6 mm. 
When a larger cortical region had been inac- 
tivated, we found a larger area of the reverse 
rearrangement of afferents, although these 
two values did not (and were not expected to) 
match precisely (12). 

Our conclusion from these findings de- 
pends on the assumption that muscimol 
selectively suppressed activity of the post- 
synaptic cells and did not have presynaptic 
effects. Several lines of evidence support 
this idea: (i) Muscimol binding studies dem- 
onstrate binding in kitten visual cortex 
with a single binding affinity and GABAA 
pharmacology (13). (ii) Whereas GABA 
binds both pre- and postsynaptically, the 
presynaptic binding site is reported to be a 
GABA, receptor (14). Finally, if muscimol 
has an effect on the viability of presynaptic 
fibers or on neurotransmitter release, such 
an effect should (iii) cause a degradation of . . - 
presynaptic afferents for both eyes or (iv) 
disrupt all plasticity, as was observed in the 
tetrodotoxin-treated cortex in which both 
the pre- and postsynaptic elements were 
inactivated (5) .  The present finding that 
afferents in muscimol-treated cortex 
showed plasticity (albeit in the opposite 
direction from normal) argues strongly 
against the last two possibilities. 

Identical patterns of input activity 
caused opposite plasticity depending on 
whether the response of the postsynaptic 
cortical cells was inhibited. Thus, postsyn- 
aptic activity plays a crucial role in the 
anatomical plasticity of afferent inputs to 
the developing visual cortex. Although it is 
not obvious what parameter of the postsyn- 
aptic activity is critical for geniculocortical 
afferent rearrangement, it is clear that spike 
activity in postsynaptic cells was absent and 
therefore not necessary for this type of plas- 
ticity, which suggests that membrane po- 
tential or conductance or both are im~or- 
tant in the determination of the direction 
of plasticity. 

Postsynaptic activity was recently shown 
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to be important in  the developmental plas- 
ticitv of thalamocortical afferents in the 
mammalian somatosensory system (1 5). In 
the rat S1 cortex, the excitatorv neurotrans- 

with a strong postsynaptic response, the  
contrary is true. 
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