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Molecular Evidence That the 
Myxozoan Protists Are Metazoans 

James F. Smothers," Carol D. von Dohlen, Laurens H. Smith Jr., 
Richard D. Spallt 

The evolutionary origins of the protistan phylum, Myxozoa, have long been questioned. 
Although these obligate parasites are like protozoans in many features, several aspects 
of their ontogeny and morphology have implied a closer relationship to metazoan lineages. 
Phylogenetic analyses of 18s ribosomal RNA sequences from myxozoans and other 
eukaryotes, with the use of parsimony, distance, and maximum-likelihood methods, 
support the hypothesis that myxozoans are closely related to the bilateral animals. These 
results suggest that the Myxozoa, long considered an assemblage of protozoans, should 
be considered a metazoan phylum. 

T h e  reconstruction of animal phylogeny 
has engaged scientists for over a century 
(1 ) .  Wi th  the advent of molecular char- 
acters, hypothesized relationships among 
some taxa have become solidified, where- 
as others remain contentious (2) .  Most 
biologists would agree, however, on  the 
set of taxa that constitutes the Metazoa, 
or multicellular animals. Not  since dis- 
covery of the Loricifera in the last decade 
has a phylum been formally added to this 
taxonomic group (3). Here, we present 
evidence that the Myxozoa, a phylum 
generally placed in the kingdom Protista 
(Protoctista) (4-6), shares its most re- 
cent common ancestor with a metazoan, 
not a protozoan, lineage. 

The phylum Myxozoa comprises over 
11 00 described species of oligocellular, ob- 

ligate endoparasites and is thus one of the 
largest protistan assemblages (4). Members 
of the class Myxosporea (the majority of 
myxozoans) principally infect teleost fishes, 
and members of the Actinos~orea mainlv 
infect aquatic, oligochaete worms (7). Myx- 
osporea are either coelozoic within hollow 
organs or histozoic in solid tissues and cause 
tissue displacements and destruction and 
sometimes death of their hosts. For exam- 
ple, infections by the European parasite 
Mvxobolus cerebralis in North American sal- 
monid fish can cause serious losses to aqua- 
culture industries. The avirulence of most 
myxosporeans in their natural hosts, how- 
ever, implies a long history of association 
(8). 

The diagnostic feature of Mvxozoa is 
the infecti;e spore, a dispersal stkge com- 
~ o s e d  of distinct gametic (autogamic) 
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83209. USA. able filaments, enve lo~ed  bv valve-like 
C. D, von Dohlen, Departrnent of Ecology and Evolution- somatic cells. Proliferative stages (tropho- 
ary Biology, University of Arizona, Tucson, AZ 85721, 
I I C A  zoites) are often multinuclear and may 
VOH. 

grow to macroscopic size (8). However, 
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laboratory culture. Experimental trans- 
mission studies of both myxosporeans and 
actinosporeans suggest that the two para- 
sites are possibly alternative forms of a 
single, complex life cycle: M, cerebralis 
infections in flsh, for example, may be 
initiated by an actinosporean of tubificid 
worms (9).  

The phylogenetic affiliations of Myxo- 
zoa have remained unclear since their 
discovery and recognition as a distinct 
taxonomic group in the 19th century 
(10). Though protistan in habits and size, 
myxozoans exhibit a degree of multicellu- 
larity and cell differentiation found in no 
other protozoans (1 1 ). O n  the basis of the 
common possession of spores with eject- 
able filaments and amoeboid cells, Myxo- 
zoa and Microsporea once shared the class 
or subphylum Cnidosporidia in the old 
phylum Protozoa. After discoveries about 
their morphology and life history, Micro- 
sporea were assigned to their own pro- 
tistan phylum; molecular evidence con- 

firmed that these minute, unicellular or- 
ganisms are extremely ancient eukaryotes 
(12). The cellular complexities of myxo- 
zoans, in contrast, have provoked specu- 
lation that these parasites share a most 
recent common ancestor with metazoan 
taxa, not protists (13). For example, the 
structural and developmental similarities 
of polar capsules and cnidarian nemato- 
cysts, and the striking parallels between 
s~oroblasts and larval Narcomedusae, 
have engendered hypotheses that myxo- 
zoans share a most recent common ances- 
tor with the Cnidaria (14). Other workers 
have interpreted their' cellular differenti- 
ation, and features such as the desmo- 
some-like structures between valve cells, 
to suggest that myxozoans are a primitive 
(non-Cn~darian) animal lineage (15). 

Given such uncertainty regarding 
myxozoan origins, we determined the se- 
quences of small-subunit (18s) ribosomal 
RNAs (rRNAs) for five myxosporean spe- 
cies in three different genera ( 1  6)  to re- 
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Fig. 1. Phylogenetic position of Myxosporea (Myxozoa) among representative eukaryote groups 
(1 7), as inferred from 18s ribosomal R N A  sequences. Open bars indicate metazoan taxa; closed 
bars indicate protistan taxa. Four of the five Myxosporea (numbered) were previously uncharacter- 
ized species. The structure of the tree is the consensus of 500 parsimony bootstrap replicates (18). 
The percentage of parsimony bootstrap resamplings supporting a given branching event is shown 
above the branch, and the percentage of neighbor-joining (19) replicates supporting a branching 
event is shown below the branch (confidence levels greater than 50% are indicated). Branch lengths 
are proportional to the number of substitutions. The branch uniting the myxozoans and all bilateral 
animals has a decay index (37) of >5.  Only sites that could be aligned without ambiguity were 
included (32). All analyses were performed as unrooted; here, the root is placed between the 
alveolates and the rhizopod (24). Maximum-likelihood methods (27) also supported the position of 
the myxozoans shown here. 

solve their phylogenetic position accord- 
ing to molecular evidence. We used par- 
simony and neighbor-joining methods to 
find the best supported tree for myxozoans 
and a selection of other eukaryotes (17) 
and then used parsimony and maximum- 
likelihood methods to test three alterna- 
tive hypotheses: that myxozoans share 
their most recent common ancestor with 
( i )  an alveolate or rhizopod protistan lin- 
eage, (ii) a cnidarian lineage, or (iii) a 
bilateral metazoan lineage. 

The position of the myxozoans as a 
metazoan lineage was supported with 
100% bootstrap confidence in both parsi- 
mony (18) and neighbor-joining analyses 
(19) (Fig. 1). The topology recovered in 
bootstrap parsimony analysis was the 
same as one of four shortest length trees 
inferred with maximum parsimony, all 
sites and transformations weighted equal- 
ly [the four trees (length = 1586) differed 
only in the positions of the placozoan and 
ctenophoran]. The inclusion of myxozo- 
ans in the bilateral animal clade also held 
when transversions were weighted 10 to 1 - 
over transitions. The relationships of 
nonmyxozoan taxa that were well sup- 
ported in our analyses (bootstrap values 
>80%) generally corroborate previous 
morphological and molecular studies that 
included the same groups (20-24), 
whereas branching events with lower 
bootstrap support (<go%) involve taxa 
that show conflicting arrangements in 
other studies (1, 2, 23, 24, 25). It is 
possible that the set of taxa included, or 
the presence of long, unbranched lineages 
can affect, patterns recovered in phyloge- 
netic analyses (26). The myxozoans are 
comparatively long-branched taxa, as are 
all the bilateral animals relative to other 
taxa in this study. For this reason, we 
analyzed subsets of the taxa shown here, 
as well as different alignments including 
other taxa. In all of these analvses. the , , 

status of the Mvxozoa as a metazoan lin- 
eage did not change. 

With both parsimony and maximum- 
likelihood methods (27) ,  we evaluated 
different tree topologies that correspond- 
ed to the alternative hypotheses of myxo- 
zoan origins, as stated above. Under topo- 
logically constrained parsimony searches, 
35 to 46 extra stens were reuuired if 
myxozoans were forced to be a sister group 
to different protistan lineages, 22 extra 
steps were added if myxozoans were con- 
strained as a sister group to the Cnidaria, 
and 16 to 29 extra steps were necessary if 
myxozoans were sisters to different bilat- 
eral animal lineages. Only five extra steps 
were added if myxozoans were a sister 
group to all bilateral animals. When sirn- 
ilar topologies were evaluated with max- 
imum likelihood, the tree in which myxo- 
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zoans were a sister group to the Nematoda 
(Fig. 1 )  had the highest log-likelihood 
value and was significantly more likely 
than other topologies that  laced the 
lnyxozoans as a sister group to individual 
protistan, cnidarian, or other animal lin- 
eages. However, the topology of Fig. 1 was 
not significantly different from an alterna- 
tive topology that  laced the myxozoans as 
a sister group to all bilateral animals. 

These molecular data ~ r o v i d e  evi- 
dence, as others have suggested on  the 
basis of morphological criteria, that 
myxozoans constitute a metazoan, not  a 
protozoan, lineage. Further refinement of 
mvxozoan relat ionshi~s to other metazoan 
~ h y l a  may emerge when complete 18s  
rRNA seauences are available for addi- 
tional myxozoan and metazoan taxa, or 
when information from other molecules is 
gathered. W e  found no  support, however, 
for the hypothesis that myxozoans and 
cnidarians share a recent, common evolu- 
tionary history. Rather, myxozoan origins 
appear to date later in metazoan phylog- 
eny, to the appearance of the bilateral 
animals. A t  present, we cannot distin- 
guish whether myxozoans are members of 
the bilateral animal clade or a sister group 
to them. Under either scenario, the an- 
cestors of extant mvxozoans must have 
undergone extensive reductions in mor- 
phology and development. Unlike cnidar- 
ians and higher metazoans, myxozoans are 
not known to develop multiple differen- 
tiated tissues, eggs, and sperm or form a 
blastula (15, 28), but the common ances- 
tor of myxozoans, bilateral animals, and 
cnidarians most likely ~ossessed these fea- 
tures. Myxozoans may be an  extreme ex- 
ample of the pattern of degeneracy that is 
characteristic of parasite evolution. 

Our results also have implications for 
mvxozoan svstematics. Classification of 
thkse parasites traditionally has been 
based on spore morphology (29), now 
known to be a plastic trait in some species 
(30). Uncertainty concerning the closest 
relatives of Myxozoa has precluded the 
use of outgroups to determine primitive 
versus derived traits; thus, hypotheses of 
relationships within the ~ h y l u m  necessar- 
ily have relied on  host phylogeny. Our 
study shows that rRNA sequences con- 
tained sufficient information to resolve 
even intraclass relationships. In fact, the 
data imply that two genera (Henneguya 
and Myxobolus) are paraphyletic (Fig. 1). 
Further seauence data will be instrumen- 
tal in the systematics of these widespread 
but little recognized organisms. Potential 
hosts of myxozoan parasites are vastly un- 
dersampled, and given the abundance of 
teleost fishes (more than 40,000 species), 
there are likely many undescribed species. 
Perhaps our results will lead to future 

studies of myxozoan life history, develop- 
ment, and evolution, as well as additional 
molecular work to further refine the sys- 
tematic position of these organisms. 
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