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Coaxially Stacked RNA Helices in the Catalytic 
Center of the Tetrahymena Ribozyme 

Felicia L. Murphy, Yuh-Hwa Wang, Jack D. Griffith, 
Thomas R. Cech* 

Coaxial stacking of helical elements is a determinant of three-dimensional structure in 
RNA. In the catalytic center of the Tetrahymena group I intron, helices P4 and P6 are part 
of a tertiary structural domain that folds independently of the remainder of the intron. When 
P4 and P6 were fused with a phosphodiester linkage, the resulting RNA retained the 
detailed tertiary interactions characteristic of the native P4-P6 domain and even required 
lower magnesium ion concentrations for folding. These results indicate that P4 and P6 
are coaxial in the P4-P6 domain and, therefore, in the native ribozyme. Helix fusion could 
provide a general method for identifying pairs of coaxially stacked helices in biological 
RNA molecules. 

M a n y  RNA molecules require specific 
three-dimensional structures for their bio- 
logical activity. Determination of RNA sec- 
ondary structure (base-paired helices, bulg- 
es, and hairpin loops) is now relatively 
straightforward ( 1 ) .  Bridging the gap from a 
secondarv structure to a three-dimensional 
structure, on the other hand, remains prob- 
lematic. The only biologically active RNAs 
whose structures have been resolved at the 
atomic level by x-ray crystallography are 
transfer RNAs (tRNAs) (2). 

RNA secondary structures often have 
three or more helical elements diverging 
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from a central wheel, as in the tRNA clo- 
verleaf. Other examples are found in ribo- 
somal RNAs (rRNAs) ( 3 ) ,  group I and 
group I1 self-splicing introns (4, 5), small 
nuclear RNAs (6), and the human immu- 
nodeficiency virus (HIV) Rev response el- 
ement (7). In tRNA, pairs of adjacent RNA 
helices share the same helix axis: this is the 
case for the aminoacyl acceptor and T stems 
and also for the anticodon and D stems. 
Such arrangements are expected to be fa- 
vorable because of the energetic contribu- - 
tion of base stacking. If coaxially stacked 
helices could be identified in an unknown 
RNA structure, then the overall architec- 
ture of the molecule would begin to become - 
apparent, and a constraint for modeling 
would be provided. 

Catalytic RNAs (ribozymes) provide sys- 
tems for addressing questions of RNA struc- 
ture because their structural integrity is re- 
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flected in the reactions they catalyze (8). paired regions P3, P4, P6, and P7 (Fig. 1A). capable of folding into i t s  correct secondary 
The catalytic center common to group I Two of these, P4 and P6, are in the same and tertiary structure in the absence of the 
introns contains four closely linked helices, structural domain-a portion of the intron remainder of the intron (9, 10). In the 

Fig. 1. Secondary structure of the P4-P6 domain of the A J Y S ~  B om----- - ---- 
Tetrahymena ribozyme and design of the P4-P6 fusion 
RNA. (A) Structural model of the Tetrahymena self- 
splicing intron (4) displayed in the format of Burke and 
co-workers (33). Solid arrows indicate 5' and 3' splice 
sites. Nucleotide sequence shown in paired regions P3, 
P4, P6, and P7 and adjacent single-stranded nucleo- 
tides highlights the catalytic center of the ribozyme. 
Heavy dashed line indicates the phosphodiester link- 
age we introduced to create the P4-P6 fusion RNA; its 
5' and 3' termini are also indicated. Nucleotide num- 
bers refer to the excised intron. (6) The P4-P6 domain 
represented according to Cech and co-workers (34). 
P4 is coaxially stacked on P6. Boxed nucleotides con- 
nected by solid lines indicate the long-range tertiary 
interaction between the GAAA loop and P6a (10) and 3' terminus 
the triple-strand regions involving P4 and P6 (72, 73, of P4-P6 fusion 0 - 0  0 - 0  

29). We introduced the dashed lines indicating the co- - 

valent phosphodiester backbone to avoid a crowded 0-0-240 
0 0 

representation; the lines do not represent additional 0 0 0  

nucleotides. In the mutant called J515a paired, we mu- 
tated the nucleotides involved in the bend at the top of 
the diagram to give a continuous base-paired helix be- 
tween P5 and P5a, thereby destabilizing the bend (9). 

Fig. 2. The P4-P6 fusion 
RNA shows the detailed 
Fe(ll)-EDTA cleavage-protec- 
tion pattern characteristic of 
the native domain (35). The 
minus sign indicates a lane of 
untreated RNA. Sequence 
ladders for guanosine (G), 
adenosine (A), adenosine 
plus uridine (A + U), or any 
nucleotide (N) produced by 
limited treatment with ribo- 
nucleases or alkali (36). RNA 
cleaved by Fe(ll)-EDTA in the 
presence of the indicated 
MgCI, concentrations is 
shown; a decrease in intensi- 
ty of an area of a lane after 
addition of MgCI, represents 
protection from cleavage by 
RNA folding. Structural dia- 
grams of the native and fusion 
domains at left and at right, 
respectively, are extended 
versions of that shown in Fig. 
1 B; sites of protection from 
Fe(ll)-EDTA cleavage are 
boxed and shaded. The 5'- 
GA-3' in P6a, which was pro- 
tected in the P4-P6 fusion 
molecule, was too close to 
the 3' end of the native P4-P6 
domain for us to confin its 
protection. Sites of altered 
connectivity in P4-P6 fusion 
are boxed and denoted by arrc 

loop cl, 
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standard secondary structure diagram of 
group I introns, P4 and P6 are represented 
as being perpendicular. However, the 3' 
nucleotide of P4 (A214) is immediately 
adjacent to the 5' nucleotide of P6 (G215), 
and researchers have modeled these two 
duplexes as sharing the same helix axis 
(11-13) (Fig. 1B). 

To provide a test of the coaxial stacking 
of P4 and P6, we constructed a circularly 
permuted version (14) of the P4-P6 tertiary 
structure domain in which U258 at the 3' 
end of P6 was directly linked to U107 at the 
5' end of P4 (Fig. 1A). In this P4-P6 fusion 
construct, the ends of the RNA are in the 
region usually capped off by the P6b hairpin 
loop, a loop which is not itself important 
for intron function (15) or for higher- 
order structure of the P4-P6 domain (9, 
10). If the three-dimensional structure of 
the domain involved juxtaposition of the 
P4 and P6 helices at an angle, then we 

Fig. 3. Electron microscopic visualization of native 
and variant forms of P4-P6 RNA (20). (A) The 
P4-P6 fusion RNA and (B) the native P4-P6 do- 
main exhibit compact structures. (C) The J5/5a 
paired mutant has a disrupted tertiary structure 
and appears in an extended rod-like form charac- 
teristic of its secondary structure. Arrows point to 
representative molecules. Bar is 100 nm. 

could expect the fusion of these elements 
to disrupt or destabilize the native tertiary 
structure. On the other hand, if P4 and P6 
were coaxially stacked in the native mol- 
ecule, then their fusion might be structur- 
ally inconsequential. 

We compared the tertiary structures of 
the native P4-P6 domain and the circularly 
permuted P4-P6 fusion molecule using sol- 
vent-based Fe(I1)-EDTA as a structural 
probe (16). Higher order folding of the 
P4-P6 domain in the presence of 12 mM 
MgZ+ gave a discrete pattern of protection 
from Fe(I1)-EDTA cleavage (Fig. 2, left), 
the same pattern that had already been 
established (9). Each blank region in the 
cleavage pattern can be thought of as a 
footprint, a portion of the RNA that is 
protected by interaction with another por- 
tion of the same molecule. The P4-P6 fu- 
sion RNA gave the same pattern, but in this 
case protection had largely been established 
in 1 mM MgClz (Fig. 2, right). 

The Fe(I1)-EDTA protection pattern is 
an indicator of structural integrity. Other 
work has shown that protected regions be- 
come accessible after disruption of the 
RNA tertiary structure by mutations in in- 
ternal loop J5/5a that force the loop to 
become base-paired (the J5/5a paired mu- 
tant) (9) or by single-base mutations in the 
GAAA tetraloop of P5b or in the A-rich 
bulge of P5a (10). Thus, the maintenance 
of the same detailed pattern of protection in 
the P4-P6 fusion RNA provides evidence 
that it folds into a three-dimensional struc- 
ture similar to that of the native domain. 
The Mg2+ requirement reflects the stability 
of the intron (1 7) or of the isolated domain 
(9, 10). Increasing the MgZ+ concentration 
causes structural defects in mutant introns 
to be suppressed (18). The reduced Mg2+ 
requirement for folding of the P4-P6 fusion 

Fig. 4. P4-P6 RNA has acompact structure (C) by 
nondenaturing gel electrophoresis (37). Lane 1, 
J5/5a paired mutant RNA with an extended (E) 
structure. Lane 2, P4-P6 fusion RNA. Lane 3, na- 
tive P4-P6 domain RNA. Lane M, marker double- 
stranded DNA fragments produced by Msp I di- 
gestion of pBR322; sizes in base pairs are indicat- 
ed at the right. Upper region of gel (23) contained 
additional species, presumably intermolecular, 
that were low in abundance and variable between 
experiments. 

RNA therefore suggests that fixing P4 and 
P6 in a helical geometry actually stabilizes 
the correct higher order structure of the 
entire domain (1 9). 

Direct visualization of the P4-P6 fusion 
RNA by electron microscopy in the pres- 
ence of Mg2+ (20) revealed that it had a 
compact structure indistinguishable from 
that of the native P4-P6 domain (Fig. 3, A 
and B). The frequency of compact forms 
relative to the total population was similar 
for the native domain and the P4-P6 fusion 
RNA (93 and 97%, respectively). These 
compact molecules had a diameter consis- 
tent with an RNA duplex folded on itself 
(21). In contrast, mutations such as J5!5a 
paired, which disrupt the long-range tertlary 
structure of the domain (9, lo), caused the 
RNA to appear rodlike (83% of the total 
molecules), with a length of 17.8 + 1.6 nm, 
as expected for the molecule if it had only 
secondary structure [66 + 6 base pairs (bp)] 
but no long-range tertiary structure (Fig. 
3C) (21 ). In the absence of Mg2+, with sper- 
midine as the onlv multivalent counterion 
(20), the frequency of the compact molecules 
of the native domain was reduced (9% of the 
total). This is expected because of the known 
MgZ+ dependence of tertiary structure forma- 
tion of the native domain. Under the same 
conditions, the P4-P6 fusion RNA showed 
63% compact forms, implying greater stability 
of the P4-P6 fusion molecule. 

Nondenaturing gel electrophoresis pro- 
vided another test of the structural integrity 
of the RNA domain. Although bent DNA 
and RNA double helical molecules gener- 
ally have retarded electrophoretic mobili- 
ties (22), the folded P4-P6 RNA domain 
runs faster than a duplex with the same 
number of base pairs; presumably, it is not 
just bent but also compact and in a size 
range where mean end-to-end distance dic- 
tates mobility (23). A number of mutations 
that disrupt the domain tertiary structure 
cause the RNA to migrate with a reduced 
mobility (23) that we infer to be character- 
istic of an extended helical form (24). 
When we applied this test to the P4-P6 
fusion RNA, the RNA was found to comi- 
grate with the native RNA domain with a 
mobility characteristic of a compact, rather 
than an extended, conformation (Fig. 4). 

In summary, a molecule in which P4 and 
P6 are forced together by covalent linkage 
still forms the correct three-dimensional 
structure, as judged by Fe(I1)-EDTA cleav- 
age, electron microscopy, and nondenatur- 
ing gel electrophoresis. We therefore con- 
clude that paired regions P4 and P6 are 
coaxially stacked in the native domain. Be- 
cause the structure of the isolated P4-P6 
domain is the same as its structure in the 
intact intron (9). we infer that P4 and P6 ~ ,, 

are coaxial in the active ribozyme. A test for 
coaxial stacking similar to ours has been 
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performed for two stems in the hairpin ri-
bozyme, with the opposite result: A joining 
segment of five or more nucleotides was 
required for efficient ribozyme action, and 
reduction to a single nucleotide bulge was 
inhibitory (25). It was therefore concluded 
that the helices are positioned at an angle, 
rather than coaxially, in the active structure 
(25). Helix fusion should provide a general 
test for the coaxial stacking of RNA stems. 
The positive result—the fusion is nondis-
ruptive—indicates coaxial stacking, where­
as the negative result would not rule out 
coaxial stacking, because it is conceivable 
that covalent linkage might alter helix 
phasing or prevent some flexibility required 
for the RNA structure and function. 

What is the functional importance of 
coaxially stacked P4 and P6? The P4 and P6 
duplexes and the adjacent P4-P5 internal 
loop contain some of the sequences that are 
the most highly conserved among diverse 
group I introns (13, 26). The P4-P5 loop, 
which researchers have proposed organizes 
the guanosine-binding site in P7 relative to 
the reaction site in PI (27), is positioned in 
the active site by P4, always a 6-bp helix 
(26). Researchers have proposed that the 
strand leading into P4 and the strand exit­
ing P6 form a triple helical scaffold (Fig. 
IB), on the basis of phylogenetic analysis 
and site-specific mutagenesis (12), in vitro 
selection experiments (28), and nuclear 
magnetic resonance spectroscopy of model 
P4-P6 systems (29). The triple helical scaf­
fold may stabilize the coaxially stacked P4 
and P6 helices, help orient the rest of the 
catalytic core relative to the P4-P6 domain, 
or both. 

It remains to be tested whether the P4-
P6 fusion RNA could assemble with other 
portions of the intron to reconstitute an 
active ribozyme of altered connectivity. 
Such a multicomponent group I intron 
might even exist in nature. 
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