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Regulation of Alternative Splicing in Vivo by 
Overexpression of Antagonistic Splicing Factors 

Javier F. Caceres, Stefan Stamm, David M. Helfman, 
Adrian R. Krainer* 

The opposing effects of SF2lASF and heterogeneous nuclear ribonucleoprotein (hnRNP) 
A1 influence alternative splicing in vitro. SF2lASF or hnRNP A1 complementary DNAs 
were transiently overexpressed in HeLa cells, and the effect on alternative splicing of 
several cotransfected reporter genes was measured. lncreased expression of SF2lASF 
activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and 
prevented abnormal exon skipping. lncreased expression of hnRNP A1 activated distal 
5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing 
factors influence different modes of alternative splicing in vivo and may be a natural 
mechanism for tissue-specific or developmental regulation of gene expression. 

Alternative splicing is a major mechanism 
for controlling the expression of cellular and 
viral genes. SFZ/ASF and other members of 
the SR protein family have an activity re- 
quired for general splicing in vitro and also 
regulate alternative splicing by promoting the 
use of proximal 5' splice sites (1-4). This 
latter activity is counteracted in vitro by 
hnRNP A l ,  which promotes the use of distal 
5' splice sites (5, 6). Thus, the antagonizing 
activities of SR proteins and hnRNP A1 are 
key determinants of alternative 5' splice site 
selection in vitro. In addition, a small increase 
in the concentration of SFZ/ASF prevents the 
inappropriate exon-skipping observed when 
certain precursor messenger RNAs (pre- 
mRNAs) are spliced in vitro (7). This prop- 
erty may reflect a mechanism by which SR 
proteins ensure the fidelity of splicing. Al- 
though any individual SR protein can com- 
plement an inactive splicing extract lacking 
all the SR wroteins. differences have been 
detected in tieir abiljty to regulate alternative 
splicing of different pre-mRNAs in vitro (8, 
9). Therefore, the relative abundance of each 
SR protein and the molar ratio of each SR 
protein to hnRNP A l ,  or to other antago- 
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nists, may determine the patterns of alterna- 
tive splicing of many genes expressed in a 
particular cell type. Tissue-specific variations 
in the total and relative amounts of SR pro- 
teins or their mRNAs have been described (8, 
10, 1 I),  and in addition the molar ratio of 
SFZ/ASF to hnRNP A1 varies over a wide 
range in different rat tissues (I  1 ). 

Whether changes in the relative amounts 
of SFZ/ASF and hnRNP A1 can affect gene 
expression in vivo was not known. To  address 
this question, we transiently overexpressed 
SFZ/ASF or hnRNP A1 complementary 
DNAs (cDNAs) in HeLa cells and analyzed 
the splicing patterns of cotransfected reporter 
genes. We first analyzed a thalassemic allele of 
the human p-globin gene, whose splicing is 
responsive to changes in the concentration of 
SFZ/ASF in vitro (1). This pthal allele con- 
tains a G to A transition at position 1 of 
intron 1, which results in abnormally spliced 
mRNA both in vitro and in vivo (12, 13). 
This mutation causes the activation of three 
cryptic 5' splice sites that are completely si- 
lent in the wild-type allele (Fig. 1A). 

When the pthal gene was transiently 
transfected into HeLa cells (14), all three 
cryptic sites were used in roughly equal 
proportions (Fig. 1A). Upon cotransfection 
of a human SFZ/ASF cDNA, a substantial 
change in the relative use of each cryptic 
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site was observed, with the most proximal 
5' splice site (cryptic site 3) selected almost 
exclusively (Fig. 1A). This effect on 5' 
splice site selection was the result of in- 
creased SFZIASF expression, because co- 
transfection of the parent plasmid vector 
without the SFZIASF coding sequence had 
no effect (Fig. 1A). SFZ/ASF mRNA ex- 
pressed from the cloned cDNA accumulat- 
ed in large amounts in the transfected HeLa 
cell population (Fig. 1B) (15). Although 
the relative use of the three cryptic sites 
differs in vivo (13) (Fig. 1A) and in vitro 
(1, 12), the increase in SFZ/ASF causes a 
shift toward the most proximal 5' splice site 
in both cases (1 ) (Fig. 1A). 

Next, we tested the effect of SFZIASF 
overexpression on the alternative splicing 
of rat clathrin light chain B. This gene has 
six exons, one of which, termed EN, is 
included only in neurons (1 6). Transfection 
of a clathrin minigene into HeLa cells gen- 
erates predominantly the EN-skipped form 
(16). Upon overexpression of cotransfected 
SFZIASF (Fig. ZB), the ratio of EN exon 
inclusion to exon skipping increased greatly 
(Fig. 2, C and D). Hence, in vivo overex- 
pression of SFZIASF can promote inclusion 
of a neuron-specific exon in a fibroblast. 

The difference in exon EN inclusion 
between HeLa cells transfected with or 
without SFZIASF is quantitatively smaller 
than that observed between neurons and 
HeLa cells transfected with only the 
clathrin minigene (1 6), and therefore the 
skipped form is still detectable (Fig. 2D). 
The partial extent of the switch suggests 
that exon EN inclusion is regulated in the 
brain by specific factors other than, or in 
addition to, SFZIASF-for example, a dif- 
ferent SR protein. However, a complete 
switch in splice site selection may not be 
achievable in a cotransfection experiment 
because the observed effect is dependent 
on the timing of expression of the report- 
er gene and of SFZ/ASF, as well as on the 
stabilities of reporter mRNA isoforms 
that are expressed before substantial 
amounts of SFZIASF protein accumulate 
in the nucleus. 

Alternative splicing of rat P-tropomyo- 
sin pre-mRNA is regulated in a tissue-spe- 
cific manner, in part by use of exon 6 in 
smooth muscle and nonmuscle cells and by 
use of exon 7 in skeletal muscle (17, 18). 
Splicing of a P-tropomyosin minigene tran- 
script in HeLa cell extracts or in transfected 
cells generates, in addition to the non- 
muscle 5 , 6 , 8 , 9  mRNA, an inappropriately 
spliced 5, 8, 9 mRNA as a consequence of 
abnormal skipping of exons 6 and 7 (1 8,19) 
(Fig. 3A). We tested whether increasing 
the amount of SFZIASF in vivo can correct 
this abnormal splicing pattern. 

Cotransfection of the SFZIASF cDNA 
and the P-tropomyosin minigene resulted 

in a reduction in the amount of the exon- 
skipped 5, 8, 9 mRNA relative to the exon 
inclusion form (Fig. 3A) (20). Further anal- 
ysis indicated that SFZ/ASF overexpression 
stimulated inclusion of the fibroblast-specif- 
ic exon 6 (Fig. 3B), whereas exon 7 inclu- 
sion was not detected (21). These results 
agree with in vitro experiments that showed 
that high concentrations of SFZIASF can 
prevent inappropriate exon skipping (7) 
and further implicate SFZIASF in the 
mechanism responsible for splicing fidelity 

Fig. 1. Effect of SF2/ASF 
transient overexpression on 
P-thalassemia pre-mRNA 
splicing. (A) Top: Patterns of 
splicing of a human pthd 
gene upon cotransfection of 
pCG-SF2 (lanes 2 and 4) or 
pCG (lanes 3 and 5). Lane 0 
shows transfection of a 
p-globin wild-type (W) al- 
lele (pUCP128SV) (25). Bot- 
tom: Structure of a ptha' A- 
lele (13) of human P-globin 
pre-mRNA, showing three 
cryptic 5' splice sites (crl , 
cr2, and cr3) that are acti- 

WT Thalassemia 
n r  

0.5 Pg 1 1pS 

in vivo. The fact that SFZIASF did not 
activate the more proximal exon 7 is con- 
sistent with the notion that use of this exon 
may require different, or additional, muscle- 
specific regulators, such as another SR pro- 
tein or an unrelated factor. 

To address the role of hnRNP A1 in the 
regulation of alternative splicing in vivo, we 
transiently overexpressed the cDNA in 
HeLa cells and analyzed the pattern of al- 
ternative splicing of a cotransfected adeno- 
virus EIA gene. Transfection of the EIA 

vated as a result of the mu- 0 1 2 3 4 5 
tation at the 5' s~lice site 
and p.mers used for RT- +E PCR analysis. (B) Top: De- 
tection of SF2/ASF expres- J. 
sion in the same RNA Sam- 

:2/AsF 
FZASF 

ples as in (A). Bottom: Diagram of the promoters that drive expression of endogenous and transfected 
SF2/ASF and primers used for RT-PCR analysis. CMV, cytomegalovirus. 

Fig. 2. Effect of SF2/ASF A -1 - 
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on alternative splicing of d o c  

rat clathrin light chain B . . f l l g k  
(LCB). (A) Diagram of the m u  COO 01 

LCB minigene, which in- 
I 

cludes exon EN in neu- 
rons but excludes it in all I 

other cell types, and Skipping 
primers used for amplifi- 
cation by RT-PCR. (B) 
Detection of SF2/ASF 

t 
expression in trans- m cn 

3. ¶. 

fected cells (see Fig. 1 B 2 2 
diagram). (C) Detection 
of exon EN inclusion; 9 Fu - ,  c =A,,,c 

lanes are as in (B). (D) 
Detection of exon EN 
skipping; lanes are as in I -Exogeno~ 

(B). The upper band (in- -Endogenous 

dicated by an asterisk) 
represents a previously 4 5 6 7  

nclusion 

0 0 
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described heterodimer 
artifact (16). The LCB minigene contains the complete introns D (1.8 kb) and E (3.1 kb) of the LCB gene, 
as well as 108 and 45 nucleotides of exons IV and V, respectively, and the complete 54-nucleotide EN 
exon (16). The minigene was cloned into pa3 (26), in which transcription is driven by an SV40 promoter. 
HeLa cells were transfected with 4 pg of the LCB minigene and the indicated amounts of either pCG-SF2 
or pCG. RNA samples were analyzed by RT-PCR with exon V reverse and SV40 forward primers. The 
RT-PCR products were detected by Southern (DNA) blotting with the [y-32P]adenosine triphosphate 
end-labeled oligonucleotide CTTCCGATGCCACATAGCCAATGG, which is EN-specific, as a probe for 
exon inclusion. The same blot was stripped and reprobed with an oligonucleotide complementary to the 
flanking exons IV and V, under hybridization conditions that detect only EN skipping (16). 
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gene alone, or cotransfection with the con
trol plasmid, generated multiple mRNA iso-
forms that represent alternative 5' splice 
site utilization (Fig. 4, B and C). Cotrans
fection of the hnRNP Al cDNA resulted in 

a shift toward use of the most distal 5' splice 
site (Fig. 4, B and C) to generate the 9S 
mRNA, which is characteristic of the late 
phase of adenovirus infection (22). This 
result is consistent with in vitro experi

ments showing that addition of hnRNP Al 
causes activation of the El A 9S 5' splice 
site (5). 

Cotransfection of the SF2/ASF cDNA 
strongly activated the most proximal 5' 
splice site, giving rise to the 13S mRNA 
(Fig. 4, B and C). Expression of transfected 
SF2/ASF or hnRNP Al was verified by 
reverse transcription-polymerase chain re
action (RT-PCR) analysis of the corre
sponding samples (21). Expression of trans
fected hnRNP Al was low, which may ac
count for the relatively small extent of 
proximal to distal 5' splice site switching 
(Fig. 4C). The hnRNP Al protein is very 
abundant in HeLa cells, and its expression 
may be tightly regulated (23). 

In summary, we show that overexpres-
sion of hnRNP Al activated distal 5' splice 
sites, whereas overexpression of SF2/ASF 
activated proximal 5' splice sites, prevented 
abnormal exon skipping, and promoted 
exon inclusion. These effects are exactly as 
predicted from previous in vitro experi
ments with SF2/ASF and hnRNP Al . Our 
transfection experiments demonstrate that 
transient changes in the cellular ratio of 
SF2/ASF to hnRNP Al can influence sev
eral different modes of alternative splicing 
in vivo. Recent experiments showed that 
the molar ratio of SF2/ASF to hnRNP Al 
naturally varies over a very wide range in 
different rat tissues (11). Taken together, 
these results strongly suggest that in vivo 
regulation of the expression of many genes 
by alternative splicing may be accomplished 
at least in part by tissue-specific, develop-
mentally regulated, physiological state-de
pendent, or virus-induced variations in the 
relative levels of one or more SR proteins 
and the antagonizing factor hnRNP Al . 
Changes in the nuclear concentration of a 
limited number of general splicing factors, 
rather than expression of numerous gene-
specific regulators, may in this manner con
trol the expression of a wide variety of 
genes. 
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Coaxially Stacked RNA Helices in the Catalytic 
Center of the Tetrahymena Ribozyme 

Felicia L. Murphy, Yuh-Hwa Wang, Jack D. Griffith, 
Thomas R. Cech* 

Coaxial stacking of helical elements is a determinant of three-dimensional structure in 
RNA. In the catalytic center of the Tetrahymena group I intron, helices P4 and P6 are part 
of a tertiary structural domain that folds independently of the remainder of the intron. When 
P4 and P6 were fused with a phosphodiester linkage, the resulting RNA retained the 
detailed tertiary interactions characteristic of the native P4-P6 domain and even required 
lower magnesium ion concentrations for folding. These results indicate that P4 and P6 
are coaxial in the P4-P6 domain and, therefore, in the native ribozyme. Helix fusion could 
provide a general method for identifying pairs of coaxially stacked helices in biological 
RNA molecules. 

M a n y  RNA molecules require specific 
three-dimensional structures for their bio- 
logical activity. Determination of RNA sec- 
ondary structure (base-paired helices, bulg- 
es, and hairpin loops) is now relatively 
straightforward ( 1 ) .  Bridging the gap from a 
secondarv structure to a three-dimensional 
structure, on the other hand, remains prob- 
lematic. The only biologically active RNAs 
whose structures have been resolved at the 
atomic level by x-ray crystallography are 
transfer RNAs (tRNAs) (2). 

RNA secondary structures often have 
three or more helical elements diverging 
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from a central wheel, as in the tRNA clo- 
verleaf. Other examples are found in ribo- 
somal RNAs (rRNAs) ( 3 ) ,  group I and 
group I1 self-splicing introns (4, 5), small 
nuclear RNAs (6), and the human immu- 
nodeficiency virus (HIV) Rev response el- 
ement (7). In tRNA, pairs of adjacent RNA 
helices share the same helix axis: this is the 
case for the aminoacyl acceptor and T stems 
and also for the anticodon and D stems. 
Such arrangements are expected to be fa- 
vorable because of the energetic contribu- - 
tion of base stacking. If coaxially stacked 
helices could be identified in an unknown 
RNA structure, then the overall architec- 
ture of the molecule would begin to become - 
apparent, and a constraint for modeling 
would be provided. 

Catalytic RNAs (ribozymes) provide sys- 
tems for addressing questions of RNA struc- 
ture because their structural integrity is re- 
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