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Direct Observation of Enzyme Activity with the 
Atomic Force Microscope 

Manfred Radmacher,* Monika Fritz,* Helen G. Hansma, 
Paul K. Hansma 

The height fluctuations on top of the protein lysozyme adsorbed on mica were measured 
locally with an atomic force microscope operated in tapping mode in liquid. Height 
fluctuations of an apparent size of 1 nanometer that lasted for about 50 milliseconds were 
observed over lysozyme molecules when a substrate (oligoglycoside) was present. In the 
presence of the inhibitor chitobiose, these height fluctuations decreased to the level 
without the oligoglycoside. The most straightforward interpretation of these results is that 
the height fluctuations correspond to the conformational changes of lysozyme during 
hydrolysis. It is also possible, however, that the height fluctuations are, at least in part, 
the result of a different height or elasticity of the transient complex of lysozyme plus the 
substrate. 

Since its invention, the atomic force mi- 
croscope (AFM) ( 1 )  has been a promising 
tool for biological applications. In the 
last few years, proteins under physiologi- 
cal conditions ( 2 )  and live cells (3) 
have been imaged. In some instances, the 
AFM demonstrates true atomic resolution 
(4)  and can detect the small forces of 
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ment of Physics, University of California, Santa Barbara, 
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specific binding between individual mol- 
ecules (5, 6). . , 

Recent progress in measuring and imag- 
ine the forces between uroteins has been - 
achieved with several techniques and sys- 
tems (6, 7). These measurements suggested 
that the state of the art of detecting small 
movements at very low forces would be 
sufficient for observing the motion of pro- 
teins at the molecular level. The advantage 
of the AFM is its combination of sensing " 
small forces and its ability to position with 
nanometer accuracv and to detect obiects at 
a molecular resoluiion. ~nzymes are'a very 
promising system for watching protein mo- 
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A Mica Fig. 2. Height fluctuations measured with 
1 the AFM tip on top of a monolayer of ly- 

Fig. 1. AFM image of lysozyme molecules ad- 
sorbed on mica (24). There are single molecules 
visible (thin arrows) as well as small, chainlike 
clusters of two or three molecules (thick ar- 
rows). The inset shows an enlargement of the 
area near the topmost thin arrow. (The modu- 
lation of the tapping results in a moire back- 
ground that has been removed by Fourier filter- 
ing in the inset.) Because of tip broadening, the 
molecules appear about 15 to 20 nm in diame- 
ter (25). 

tion (8) because most of them undergo a 
conformational change during their biolog- 
ical function at a time scale accessible to 
the AFM (9). 

Lysozyme is found in a variety of ver- 
tebrate cells and secretions, such as pla- 
centa, spleen, milk, tears, and egg white. 
Its natural function is to hydrolyze 
P(1+4) glucosidic bonds in the proteo- 
glycan layer of bacteria at a maximum 
turnover rate of about two per second 
(1 0). It is a compact, single chain mole- 
cule with a molecular mass of about 17 
kD, with four disulfide bonds imposing 
rigidity to the molecule. The slightly egg- 
shaped protein has dimensions of about 
4.5 nm by 3.0 nm by 3.0 nm. Although 
the interior of the molecule is hydropho- 
bic, the active cleft is negatively charged 
and the outside carries extensive positive 
charges, resulting in an isoelectric point 
at pH 11.1. The active cleft binds and 
hydrolyzes not only the polysaccharide 
component of bacterial cell walls but also 
a variety of short oligomers of chitin ( I  1 ). 
A conformational change due to hydro- 
phobic interactions during hydrolysis has 
been proposed (1 2). In recent studies, the 
activity of lysozyme adsorbed on glass has 
been verified (1 3). We checked the ac- 
tivity of the enzyme here by light adsorp- 
tion measurements (14). 

Single lysozyme molecules adsorbed to 
mica were investigated with the AFM in 
tapping mode (15) under buffer (Fig. 1). 
In tapping mode, the sample can be vi- 
brated at a high frequency (typically, 17 

. .  . .  
o - $;;p&sgi . .  *,...: :.:++ ky . , 'a ., 5' . . 2 

. ' 

The data were recorded on mica (A) or on 
sozyme moleculesadsorbed on mica (26). 

B in buffer lysozyme in buffer (B), on lysozyme in buff- 
1 -I I er containing the substrate Cmethyl- 

(C), in buffer containing the inhibiting sub- 
stance N,N1-chitobiose (-20 pM) (Sigma) 
(D), and in buffer containing both sub- 
stances (E). In (C), spikelike jumps appear 
in the height signal. The apparent height of 
these jumps is on the order of 1 nm. 

I I I 
0 1 1 ; 4 ; 

Time (s) 

to 20 kHz). The response of the cantilever 
of the AFM to this oscillation de~ends  on 
the distance between tip and sample and 
can therefore be used to control the seD- 
aration of tip and sample. In the case of 
small, adsorbed single molecules, tapping 
mode seems to be much less destructive 
than normal imaging modes (1 6). Height 
fluctuations under various conditions 
were recorded while the AFM tip sat on 
top of a monolayer of lysozyme without 
scanning (Fig. 2) (17). We found spike- 
like height fluctuations of an apparent 
height of 1 nm while the substrate was 
present in the buffer. In all other cases, 
these spikes were missing. In particular, 
they were missing when the inhibitor and 
the substrate were present in the buffer. 
We recorded and analyzed a total of 271 
data sets taken on several spots of a total 
of six different samples (1 8). Each data set 
shows the height fluctuations while the - 
tip was sitting at one spot of the sample 
for a period of 32 s. Not all data sets in all 
categories showed the pronounced differ- 
ences of the data sets shown in Fig. 2. 

To  quantify the noisiness or the num- 
ber of spikes in each data set and to 
comDare these auantities for all data sets 
of all categories, we used several methods 
that all vielded essentiallv the same re- 
sults.  he most straightfo;ward standard 
measure is the root mean square value of 
the data, but we also created a custom 
measure: the counts of values that are 
bevond some certain threshold (0.5 nm) 
compared to the local mean of the data 
(Fig. 3). There were essentially no spike- 
like fluctuations while the tip was sitting 
on bare mica: the enzvme without anv 
substrate in the buffer dr in the presence 
of the inhibitor showed slightly more 
movement as can be seen by the increased 

number of spikes. The data sets with the 
highest frequency of spikes were recorded 
while the substrate was present in the 
buffer and the enzyme was in its active 
state (no inhibitor present). But there is a 
large spread in the data, so that even in 
the presence of substrate we could find 
data sets that were essentially identical to 
the data sets in the absence of substrate. 
However, even the differences among the 
mean numbers of spikes in each category 
are statistically highly significant even if 
all data sets are included in the analysis. 
Therefore, we conclude that these spike- 
like height fluctuations are due to enzy- 
matic activity. It is not surprising that not 
all data sets (corresponding to all areas on 
the sample) showed these signs of activi- 
ty. The activity of lysozyme is reduced 
when the molecule is adsorbed on a sur- 
face (1 1, 19), probably because of steric 
hindrance: because of their orientations, 
not every enzyme molecule on a surface is 
accessible to the substrate. 

It is known that lysozyme undergoes a 
conformational change during binding of 
the substrate (20). This conformational 
change might, depending on the orienta- 
tion, lead to a fluctuation in the height 
of the molecule. This motion can be de- 
tected in principle with a soft enough 
cantilever sitting on top of the enzyme. A 
simple estimation shows that the cantile- 
vers used could detect the small proposed 
conformational changes. The force need- 
ed to bend the cantilever by 1 nm is 50 
pN, and the energy related with this 
bending is 2 X J, corresponding to 
about 0.1 eV. Because the enthalpy of 
the hydrolysis is about 0.5 eV per oligo- 
glycoside molecule (21), this hydrolysis 
can supply enough energy for moving the 
cantilever. The inertial forces for pushing 
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Fig. 3. Comparison of all 271 data sets record- 
ed in six different preparat~ons. To quantify the 
number of spikes in the data sets shown In Fig. 
2, we counted the number of data points that 
were larger than 0.5 nm above the mean value 
of the data. Accounting for some slight drift in 
the height, which is probably thermal in nature, 
the mean was calculated in a local window of 
0.5-s length. The mean value and standard de- 
viation are indicated by the filled circle and ver- 
tical line. The significance of the differences be- 
tween the categories was tested by the mea- 
sure of Kolmogorov-Smirnoff (27). This test 
showed that the data with the substrate are 
highly significantly different from all others (P < 
0.01). 

a cantilever up by 1 nm in less than 
1 ms are several orders of magnitude 
smaller than the bending forces. O n e  may 
also neglect the viscous forces of the 
water. 

Our measurements show that the ob- 
served spikes in the measured height with 
the substrate present are related to  the 
enzymatic activity of the lysozyme. They 
disappear if the enzyme is inhibited. How- 
ever, care has to  be taken in the interpre- 
tation of these data, because even in the 
established-contact-mode AFM, elastici- 
ty, surface charges, and lateral forces can 
have a n  influence o n  the apparent height. 
The  most straightforward explanation of 
our data is a height change that is a result 
of a conformational change of the mole- 
cule or a movement of the entire mole- 
cule during hydrolysis ( that  is, a rotation 
of the egg-shaped molecule). I t  is also 
possible that  the energy release of the 
hydrolysis created a n  acoustic shock wave 
at  the molecular level, which could be 
detected by the sensing tip. Because sin- 
gle molecules of lysozyme appear about 
twice as high in tapping mode as they 
really are (22), some properties of the 
sample other than topography may influ- 
ence their appearance. 
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