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Grain Size-Dependent Alteration and the 
Magnetization of Oceanic Basalts 

Dennis V. Kent* and Jeff Gee 

Unblocking temperatures of natural remanent magnetization were found to extend well 
above the dominant Curie points in samples of oceanic basalts from the axis of the East 
Pacific Rise. This phenomenon is attributed to the natural presence in the basalts of three 
related magnetic phases: an abundant fine-grained and preferentially oxidized titano- 
magnetite that carries most of the natural remanent magnetism, a few coarser and less 
oxidized grains of titanomagnetite that account for most of the high-field magnetic 
properties, and a small contribution to both the natural remanent magnetism and high- 
field magnetic properties from magnetite that may be due to the disproportionation of the 
oxidized titanomagnetite under sea-floor conditions. This model is consistent with evi- 
dence from the Central Anomaly magnetic high that the original magnetization acquired 
by oceanic basalts upon cooling is rapidly altered and accounts for the lack of sensitivity 
of bulk rock magnetic parameters to the degree of alteration of the remanence carrier in 
oceanic basalts. 

T h e  intensely magnetized oceanic extru- 
sive layer, which consists principally of 
several hundred meters of sheet flows and 
pillow basalts, is a major source of sea- 
floor spreading magnetic anomalies (1 ) .  
As oceanic crust ages, the basalts are al- 
tered and their magnetization becomes 
substantially reduced, even though a 
record of the geomagnetic field is re- 
tained. A'hallmark of the alteration oro- 
cess that is most probably responsible for 
the reduction in magnetization is a pro- 
gressive increase in Curie temperature as 
the original titanoinagnetite (TM6O) car- 
rier of the natural reinanent magnetiza- 
tion (NRM) becomes increasingly oxi- 
dized to a cation-deficient titanomagheinite 
(2). A time constant of 500,000 years has 
long been assumed for this process, on the 
basis of analysis of dredged basalts and deep- 
tow magnetics from the slow-spreading Mid- 
Atlantic Ridge (MAR) (3-5). To explain the 
Central Anomaly magnetic high over the 
fast-spreading East Pacific Rise (EPR), the 
time constant of magnetization decrease must 
be only -20,000 years, more than an order of 
magnitude faster (6). However, the large vari- 
ation in NRM intensity found in dredged 

basalts from near tlle axis of tlle EPR (6) or, 
for that matter, the MAR (3, 4) was not 
closely accompanied by a systematic variation 
in the Curie temperatures of tlle sainples. 

A more paradoxical result of some ear- 
ly paleoinagnetic studies of dredged ha- 
salts from the MAR was that the maxi- 
mum unblocking teinperatures of NRM 
invariably extended 50" to 100°C above 
the dominant Curie temoerature. The  svs- 
teinatic elevation of NRM unblocking 
temperatures was regarded by Irving (3)  as 
a laboratory artifact and was attributed to 
the formation during therinal demagneti- 
zation of a new higher unblocking tein- 
perature phase that inherited its magne- 
tization direction from the parent materi- 
al. This interpretation was very influen- 
tial in subsecluent rock magnetic studies 
of oceanic basalts, and thermal demagne- 
tization, a key technique in characterizing 
remanence in most other rocks, has sel- 
dom been used since. In this report, we 
test the importance of the Irving hypoth- 
esis by heating and cooling samples of 
oceanic basalts under a variety of condi- 
tions in the laboratory. 

The  young basalt samples from the 
EPR that we studied show a similar svs- 
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thermal demagnetization of a sample at 
200°C, well above the estimated Curie 
temperature of 150°C, about 50% of the 
initial NRM remained (Fig. 1A).  The  
NRM nevertheless had a similar direction 
over the entire unhlocking temperature 
range (Fig. 1B). The  NRM of the EPR 
ridge axis basalts is thus characterized by 
significant unblocking of NRM occurring 
even above 300°C, consistent with an  
oxidized TMhO as the carrier. Yet, the 
high-field temperature experiments would 
suggest that a relatively unoxidized TMhO 
is the principal magnetic mineral, even 
though there is little unhlocking of NRM 
by the dominant Curie point. 

W e  initially tried to reproduce the Irv- 
ing effect in a series of prolonged heating 
experiments at temperatures of 100" to 
300°C in zero field (Fig. 2). The  rema- 
nence after even 100 hours of heating was 
not appreciably different from the reina- 
nence after the 1 hour of heating typically 
used in therlnal demagnetization. Even 
when the susceptibility markedly in- 
creased over prolonged heating at 300°C, 
which may have resulted from the inver- 
sion of some oxidized TMhO in the sam- 
ple, the reinanence direction and un- 
blocking temperature distribution above 
300°C were still essentially unaffected. 

W e  next gave the samples a ther- 
morelnanent magnetization (TRM) at a 
high angle to the NRM direction by cool- 
ing them in a 0.03-mT field from 200°C; 
this temperature is above the dominant 
Curie point of 150°C but below the un- 
blocking teinperatures of -50% of the 
NRM. The  resulting magnetization was 
then progressively demagnetized in 25°C 
steps from 50°C to 600°C (Fig. 3 ) .  If the 
Irving effect were operative, the entire 
relnanence including any unhlocking 
temperature components above the Curie 
point should have been aligned along the 
laboratory-induced therinoremanence di- 
rection. Instead, the laboratory-induced 
thermoremanence was effectively demag- 
netized by 200" to  225"C, and with fur- 
ther therlnal demagnetization we recov- 
ered the appropriate fraction of the orig- 
inal NRM vector. 

The  fine-grained EPR basalts showed 
little evidence of oxidation during these 
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or other experiments (7). W e  therefore 
conclude that the NRM that has unblock- 
ing temperatures above the doininant Cu- 
rie point is original and not  an  artifact of 
laboratory treatment. Thus, the hulk rock 
magnetic properties deduced from the 
high-field temperature experiments do 
not reflect the principal carrier of the 
NRM, and unoxidized TM60, correspond- 
ing to the doininant Curie teinnerature - 
phase, evidently contributes little to the 
NRM of these voung basalts. , - 

This paradoxical result can he ac- 
counted for bv a model of grain size- 
dependent alteiation, similar t i  that sug- 
gested hy Bina and Prkvot (B), in which 
abundant fine-grained and oxidized 
TM60 carries most of the NRM whereas a 
few coarser and less oxidized grains of 
TM60 account for most of the high-field 
magnetic properties (Fig. 4A). Most of 
the grains would have sizes appropriate for 
stable single-domain (SD) behavior for 
TM60, hut the distribution would also 
include some larger multidomain (MD) 
grains [greater than about 0.5 p m  (9)].  
The  NRM will be carried nredoininantlv 
by S D  grains. Because of their large spe- 
cific surface areas, the S D  grains will be- 

0 100 200 300 400 500 600 700 
Temperature ("C) 

Fig. 1. Comparison between the temperature 
variation of NRM and high-field magnetization of a 
representative basalt sample (CHI 14-1 0) from 
the EPR. (A) N R M  (filled circles) shows little un-  
blocking at or below the dominant Curie temper- 
ature (-150°C) as observed in multiple high-field 
temperature curves from five adjacent basalt 
specimens. (Inset) An expanded plot showing the 
presence of a phase with high NRM unblocking 
(525" to 550°C) and Curie temperature (-580°C) 
compatible with the presence of a small fraction of 
magnetite. (B) Stereonet showing the relatively 
constant direction of NRM over the entire range of 
unblocking from room temperature to -550°C. 

come oxidized faster and more thoroughly 
than the larger MD grains (10); their 
inagnetization will decrease, and their un- 
blocking temperatures as a sensitive proxy 
for their Curie point will increase. The  
relatively unoxidized MD grains will 
hardly contribute to the NRM hut, he- 
cause of their large relative volume, will 
tend to doininate the inagnetization in 
high-field experiments. 

The  EPR basalts typically show high 
ratios of saturation reinanent magnetiza- 
tion to saturation magnetization (MI /Ms) 
from 0.35 to 0.65. Because titanomaene- - 
tite grains are coinmonly assumed to have 
uniaxial magnetic anisotropy [theoretical 
liinit of MJM, = 0.5 for S D  grains (1 1 )], 
such high ratios would effectively exclude 
the presence of MD grains, which are 

Time (hours) 

0 100 200 300 400 500 600 
Temperature ("C) 

Fig. 2. Demagnetization results of a basalt sample 
(CHI 14-1 0) from the EPR subjected to prolonged 
heating in zero field at various temperatures. Open 
circles indicate remanence remaining after 1 hour 
and 100 hours of heating in zero field at the indi- 
cated temperatures. The remanence after 100- 
hour heating as well as the subsequent demagne- 
tization of these specimens (+) is not significantly 
different from that of the previously unheated 
specimen (filled circles). (Inset) Variation of room- 
temperature susceptibility, normalized to the initial 
value, k/k,, of specimens over prolonged heating 
experiments. 

NRM Demagnetization 

NRM 
0 I 

TRM Demagnetization 

9-150 '  

TRM 
TRM 

Fig. 3. Orthogonal vector end-point diagrams of 
thermal demagnetization in 25°C steps of NRM 
(top) compared to that of a TRM imparted at high 
angle to the original N R M  direction (bottom) in 
specimens of basalt sample CHI 14-1 0 from the 
EPR. The TRM is essentially removed by 200" to 
225"C, after which the original N R M  direction is 
recovered. 

characterized by low Ml/Ms ratios. Yet, 
petrographic observations indicate the 
presence of skeletal TM6O grains greater 
than a few micrometers in size. Moreover, 
the highest Mr/Ms values point to  mul- 
tiaxial anisotropy, which we take to he 
equivalent to a cubic case [theoretical 
limit of Mr/Ms = 0.87 (1 2)],  as the iin- 
portant control on the magnetization in 
the basalts (13). The  relative contribu- 
tions of partially oxidized SD and unoxi- 
dized MD grain size fractions can thus be 
balanced to account for the observed Cu- 
rie temperature, hysteresis, and NRM 
properties of the basalts (Fig. 4B). 

Our inodel indicates that the original 
NRM acquired by TM60 upon emplace- 
inent and cooling of the basalts is lost 
rapidly, as the fine-grained, remanence- 
carrying SD fraction is preferentially ox- 

-2 - 1 0 1 
log grain diameter (pm) 

Fig. 4. (A) Model lognormal grain size distribution 
and corresponding volumetric contribution for 
spherical grains of TM60. The SD size range for 
TM60 extends from the superparamagnetic (SP) 
threshold at about 0.03 pm (25) to the MD thresh- 
old at about 0.5 pm (9). Grain sizedependent, 
low-temperature oxidation [with accompanying 
-50% total reduction in saturation magnetization 
(14)] is illustrated by shading (darker for greater 
oxidation). (B) Relative contribution of M, and M, 
for SP (M,/M, < 0.01), SD (M,/M, = 0.87), and 
MD (M,/M, = 0.1) fractions, with a gradation 
across the SD-MD boundary where the balance is 
particularly sensitive to the assumed magnetic 
properties. Integrated areas for M, and M, curves 
give an overall MJM, = 0.5. 
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idized. Indeed, most of the basalt samples 
we studied were taken within just a few 
kilometers of the axis of the fast-spread- 
ing EPR (6) ,  yet all showed NRM un- 
blocking temperatures that extended well 
bevond the dominant Curie ooints. The  
remanence resulting from the single- 
phase oxidation will be reduced in mag- 
nitude by a combination of related mech- 
anisms (14,  15), ~ roduc ing  the short- 
wavelength magnetization contrast re- 
auired to account for the Central 
Anomaly magnetic high as the locus of 
voune volcanism. Even if the remanence . - 
forms along the ambient external field 
rather than inheriting the original NRM 
direction (16) ,  the apparent rapidity of 
magnetic alteration of the oceanic extru- 
sive source layer as a whole (6 ,  17) will 
still result in a high-fidelity recording of 
the geomagnetic field, as is evident in 
magnetic anomalies (1 8). 

Although most of the NRM is un- 
blocked by about 300°C in the EPR ba- 
salts, some of the remanence typically 
persists until 525O to 550°C (Fig. I A ,  
inset). Our experimental results strongly 
suggest that this remanence is carried by 
magnetite as a naturally occurring phase 
(19). Disproportionation of cation-defi- 
cient titanomaghemite under sea-floor al- 
teration conditions is a possible and likely 
explanation for the origin of the magne- 
tite (ZO), which may result in acquisition 
of a secondary magnetization [for exam- 
ple, (21)l. A n  alternative interpretation 
is that the magnetite represents an  origi- 
nal, minor constituent in oceanic basalts 
(22'). The  very long-term variations in 
oceanic basalt magnetization documented 
in the Deep Sea Drilling Program and 
Oceanic Drilling Project samples and in 
amplitudes of marine magnetic anomalies 
(23) may r.esult from the integrated re- 
sponse of a growing fraction of magnetite 
to  the reversing geomagnetic field, as sug- 
gested by the model of Raymond and 
LaBrecque (24). 
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Rapid Emplacement of Young Oceanic 
Lithosphere: Argon Geochronology of the 

Oman Ophiolite 
Bradley R. Hacker 

40Ar/39Ar dates of emplacement-related metamorphic rocks beneath the Samail 
ophiolite in Oman show that cooling to <525"C occurred within -1 million years of 
igneous crystallization of the ophiolite. This unexpectedly short time span and rapid 
cooling means that old, cold continental or oceanic lithosphere must have been 
adjacent to the ophiolite during spreading and then been thrust beneath the ophiolite 
almost immediately afterward. 

K e y  to understanding how ophiolites- 
large (up to  50,000 km2) but thin (<20 
km) and dense (3000 to 3300 kg m-3) 
sheets of oceanic rock-are e m ~ l a c e d  
onto continental margins (1)  is knowing 
the age of the o ~ h i o l i t e  at the time the - 
emplacement process began. Typically, 
this is achieved by determining when ig- 
neous rocks in the o ~ h i o l i t e  crvstallized at 
a spreading center and by determining the 
aee of metamor~hic  rocks associated with " 
the emplacement process. Estimates of 
such time intervals range from less than 5 
million years (My) for the Samail ophio- 
lite, Oman (2 ,  3 ) ,  to  nearly 20 My for the 
Bay of Islands, Newfoundland (4) ,  and 
Brooks Range, Alaska, ophiolites (5) .  The  
longer estimates are based on  the cooling 
ages of high-grade metamorphic rocks, 
which are found beneath most well-pre- 
served ophiolites (6) .  A short time span 
means that the ophiolite was young at the 
time intraoceanic thrusting began and 
then cooled rapidly. In contrast, a long 
time span implies that the ophiolite 
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cooled more slowly than normal oceanic 
lithosphere, retaining heat by some mech- 
anism such as intraoceanic magmatism. It 
is shown here that the Samail ophiolite 
was -1 My old at the time intraoceanic 
thrusting began. 

The Samail ophiolite of Oman and the 
United Arab Emirates is the best exposed, 
largest (100 km by 500 km), least deformed, 
and perhaps most studied ophiolite in the 
world (7-1 1). Most of the ophiolite bears 
the geochemical signature of formation at 
a mid-ocean-ridge-type spreading center. 
Younger, volumetrically less substantial vol- 
canic and plutonic rocks may have been 
derived from subduction zone or within- 
plate sources (12). Though now distended 
by normal faulting, the Samail ophiolite is 
inferred to have been 15 to 20 km thick 
before its emplacement onto the Arabian 
craton in Late Cretaceous time (9,  13) (Fig. 
1). In all, 7 km of crustal gabbros, sheeted 
dikes, and volcanic rocks overlie 10 km of 
tectonized upper mantle peridotite. This 
entire oceanic lithosphere section was 
thrust over adjacent oceanic lithosphere 
and then onto the Arabian craton along a 
several-hundred-meter-thick shear zone 
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