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As a step toward developing poliovirus as a vaccine vector, poliovirus recombinants were tein (207 amino acids) and the HIV-1 p17 
constructed by fusing exogenous peptides (up to 400 amino acids) and an artificial and p24 Gag fusion protein (363 amino 
cleavage site for viral protease 3Cm to the amino terminus of the viral polyprotein. Viral acids) were also cloned into poliovirus vec- 
replication proceeded normally. An extended polyprotein was produced in infected cells tors because they are important and rela- 
and proteolytically processed into the complete array of viral proteins plus the foreign tively conserved targets for the cellular an- 
peptide, which was excluded from mature virions. The recombinants retained exogenous tiviral immune response (5). 
sequences through successive rounds of replication in culture and in vivo. Infection of All poliovirus-cDNA constructs yielded 
animals with recombinants elicited a humoral immune response to the foreign peptides. replication-competent viruses after RNA 

transfection in HeLa cells (4). Recombi- 
nant mo-hgag [carrying -1090 nucleotides 
(nts) of gag] replicated at rates similar to the 

Important advantages of the oral poliovirus artificial cleavage site, thus releasing the wild-type parental strain and achieved 
vaccine include its documented efficacy, foreign protein from poliovirus proteins and nearly equivalent titers (Fig. 1B). Recombi- 
safe use in children soon after birth, ease of allowing normal viral replication. nant mo-hnef (carrying 620 nts of nef), 
administration, economy of delivery, and Poliovirus chimeras were constructed by mo-pi (carrying 150 nts from tcpA), and 
ability to induce mucosal immunity (1 ). individually cloning sequences encoding mo-sb (carrying 300 nts of CTB) replicated 
The potential adaptation of poliovirus as a five antigenic proteins into the Mahoney less well (Fig. 1B). Insertion of exogenous 
vaccine vector to express antigens from type I wild-type poliovirus or its Sabin- sequences at other sites in the genome, such 
other pathogens has been limited by the attenuated derivative (4). The antigens as at Vpl-2A, 2A-2B, and 2C-3A junc- 
small size of inserted sequences that can be chosen, all believed to induce protective tions, also yielded viable chimeric viruses; 
tolerated and by the genetic instability of 
the chimeric viruses (2). The 7.5-kb ge- 
nomic RNA of poliovirus directs the syn- ns' l' (A) Of po- A ArMicial pmtedy~ic 
thesis of a large polyprotein precursor that liovirus vectors and strategy site 
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however, insertion at the Vpg3C junction 
abolished viral replication (6). The recom- 
binant viruses were genetically stable, as 
assessed by in situ hybridization and reverse 
transcription-polymerase chain reaction 
(RT-PCR) analyses (7). These results indi- 
cate that poliovirus can stably carry inser- 
tions representing 15% of the viral genome 
size. 

To determine whether the recombinant 
viruses correctly expressed and processed 
viral and foreign polypeptides, we infected 
HeLa cells with wild-type or chimeric po- 
liovirus and, 5 hours after infection, evalu- 
ated cell lysates by immunoblot analysis (8). 
Recombinant viruses were found to produce 

and process viral capsid proteins in a similar 
manner to the wild-type strain (Fig. 2, lanes 
1 to 7). However, four of the five recombi- 
nants produced additional proteins: a slight- 
ly larger than normal P1 capsid precursor 
(lanes 3.4.5. and 7) and intermediate-sized 

eign polypeptides in the infected cells (Fig. 
2, lanes 9, 11, 13, 15, and 17). Cells infect- 
ed with recombinants mo-pi and mo-sb 
showed three distinct foreign antigens 
(lanes 9 and l l ) ,  whose molecular sizes 
suggested that they were fusions between 
the foreign protein and VpO, VpO-Vp3, or 
the entire P1 capsid precursor. Cells infect- 
ed with recombinant mo-ha showed only 
one band corresponding to a fusion between 
the HA fragment and VpO (lane 13). The 
free polypeptides produced by the mo-pi, 
mo-sb, and mo-ha recombinants were too 
small to be visualized under our electro- 
phoretic conditions. However, the free 
CTB encoded by mo-sb was readily detect- 
ed by [35S]methionine metabolic labeling of 
infected cells and subsequent immunopre- 
ci~itation with antisera to subunit B (6) .  

, , .  
polypeptides that probably represent in- 
completely processed recombinant polypro- 
teins (lanes 3 to 7). 

Cells infected with recombinants mo-sb, 
mo-ha (carrying 300 nts of the HA gene), 
and mo-hgag showed reduced expression of 
Vp2, although this protein could be detect- 
ed when infected cells were harvested 9 
hours after infection. 

All recombinants also expressed the for- 

Fig. 2. Expression and processing 
of the exogenous proteins in cells .@,sC~3 -9 8 +@ &+ d%d d d & cd* & @dQ 
infected with recombinant poliovi- - - - - - - - "cd 58 +&essss - - - - - - - - 

. , 
Cleavage of the foreign proteins derived 

from eukarvotic sources was verv efficient. ruses. Cytoplasmic lysates pre- PI' [ 
pared 5 hours after infection from 
HeLa cells infected with wild-type 
(wt) poliovirus or various recombi- 

For example, extracts from cells infected 
with recombinants mo-hgag and mo-hnef 
displayed only single immunoreactive pep- 
tides corresponding to free Gag and Nef 
(Fig. 2). Although these viruses carry in- 

nant viruses were analvzed bv im- 
munoblotting (8) with ahbodies di- - 
rected against poliovirus virions - 
(lanes 1 to 7), tcpA (lanes 8 and 9), y$F 
CTB (lanes 10 and 1 1). HA (lanes 1 2 r 

serts that are two to three times as large as 
those in the other recombinants, they rep- 
licate with nearly wild-type kinetics, sug- 
gesting that the efficiency of cleavage may 

and 13), HIV-1 Nef {lane; 14 and L 
15), and HlV-1 Gag (lanes 16 and do@ 9, % % *?: * !  
17). Poliovirus capsid proteins are "% 4 ~ S  %& ak %$, 
indicated by shaded triangles. A 
larger version of the capsid protein precursor (PI *) is observed in recornbinant-infected cells. On the basis 
of molcular size, the bands detected by antibodies against the inserted sequences are (a) pilus-PI fusion; 
(b) pilus-VpO-Vp3 fusion; (c) pilus-Vp0 fusion; CTB fused to (d) PI, (e) VpO-Vp3, and (9 VpO; (g) HA fused 
to VpO; and the free HIV-1 Nef (h) and Gag (i) proteins (8). Molecular size standards are indicated to the 
right in kilodaltons. 

be an important determinant of replicative 
ability. Importantly, the amount of free 
HIV-1 Gag [quantified by an antigen cap- 
ture enzyme-linked immunosorbent assay 
(ELISA) (Coulter)] reached 100 ng per lo5 
cells by 7 hours after infection; this repre- 
sents - 10 times more Gag than is produced 
in the same time period by the H9 T cell 
line chronicallv infected with HIV-1. Fig. 3. Kinetics of proteolytic processing and viri- 

on assembly in infected cells. (A) HeLa cells were 
infected with wild-type (wt) or recombinant virus. 
After 2 hours, cells were pulse-labeled for 30 min 
with r5S]methionine and then chased with unla- 
beled L-methionine. Lysates were prepared at the 
indicated times and subjected to immunoprecipi- 
tation with antisera to poliovirus virions. Lane 1, 
mock-infected (mk); lanes 2 to 4, wt-infected; 
lanes 5 to 7, tcpA recombinant-infected; lanes 8 
to 10, CTB recombinant-infected (9). Additional 
processing intermediates are indicated by shaded 
arrows on the right. The poliovirus capsid precur- 
sor (PI) and mature proteins VpO, Vpl , Vp2, and 
Vp3 are indicated by solid arrows [note that re- 
combinant viruses produced a slightly larger PI 
precursor (bracket)]. (6) Analysis of poliovirus viri- 
on formation. Metabolically labeled extracts from 
HeLa cells infected with wt or recombinant mo-ha 
were subjected to sucrose gradient sedimenta- 
tion (9). Samples from gradient fractions corre- 
sponding to 150S, 75.5, and 14s were analyzed 
by 10% SDSpolyacrylamide gel electrophoresis 
(SDS-PAGE). Mature virions (1 50s) were assem- 
bled by the recombinant mo-ha and contained the 
three major virion constituents, VP1, VP2, and 
VP3 (lanes 1 and 4). The 75s procapsids were 
composed of VPO, VP1, and VP3 (lanes 2 and 5), 
as were the 1 4 .  pentamers (this fraction also in- 
cluded other proteins, lanes 3 and 6). 

The kinetics of polyprotein synthesis 
and processing were analyzed by pulse-chase 
experiments with recombinants mo-pi and 
mo-sb. The recombinants produced the vi- 

mo-hgag + mo-hnef Modc 
11 2 3 4 5 6 7 8 9 1011 1213141151617] - - - - - - - - - - - - - - - - -  

m-hgag + mo-hef Modc 

9 9 

Nef ) 

B wt mo-ha 

Fig. 4. immunological response of PVR trans- 
genic mice infected with a mixture of mo-hgag 
and mo-hnef (12). Sera from three mock-infected 
mice (lanes 1 5 to 17) and from 14 mice infected 
with the recombinants (lanes 1 to 14) were ana- 
lyzed by immunoblotting (12). Bands correspond- 
ing to poliovirus capsid proteins Vpl and Vp2 and 
to HIV-1 Gag and Nef are indicated. 

vpo)  - -  - 
vp2 vp' t - - - 
vp3 b- 
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Fig. 5. Antibody titers in sera of infected mice (A) and in sera (B) and rectal washings (C) of an infected 
cynomolgus monkey. Antibody titers of anti-Nef [IgG (striped bars) or IgA (black bars)] in mouse sera were 
determined by ELlSA (16) after two intraperitoneal inoculations with mo-hnef (72). (6 and C) Anti-Nef IgG 
(striped bars) and IgA (black bars) titers were measured weekly in the serum and rectal washings of a 
monkey immunized by a single rectal inoculatian with poliovirus recombinant mo-hnef (13). 

ral capsid proteins with similar kinetics as 
wild-type virus (Fig. 3A). As expected, a 
larger P1 precursor was synthesized by mo- 
pi and mo-sb recombinants (Fig. 3A, com- 
pare lane 2 with lanes 5 and 8), but the 
precursor was cleaved to the mature pro- 
teins with kinetics similar to wild type, 
although some partially processed inter- 
mediates were detected (Fig. 3A, shaded 
arrows). 

Poliovirus particle assembly proceeds 
through several subviral intermediates 
that can be resolved bv sedimentation 
through sucrose gradients: 14s  pentamers, 
75s procapsids, and 150s virions. Because 
the foreign proteins were initially fused to 
the viral structural protein precursors, we 
examined whether the recombinant virus- 
es assembled normally. Sucrose gradient 
analysis of infected cell lysates (9) dem- 
onstrated that the sedimentation coeffi- 
cients and protein composition of mo-ha 
virions and viral subparticles were indis- 
tinguishable from those of wild type (Fig. 
3B), suggesting that  poliovirus assembly is 
normal and that the H A  fragment is not  
included in the virus particles. The  buoy- 
ant density in cesium chloride of mo-hgag 
and mo-hnef was identical to  that of wild- 
type poliov.i.rus, and n o  immunoreactive 
Gag or Nef was detected in purified viri- 
ons (10). 

  he 'immunogenicity of the poliovirus 
recombinants was evaluated in transgenic 

u 

mice that express the human poliovirus re- 
ceptor (PVR) and therefore are susceptible 
to poliovirus infection (I  1 ). Mice were in- 
oculated intra~eritoneallv on two occasions 
with a mixture of recombinants mo-hgag 
and mo-hnef or with saline. Serum antibod- 
ies recognizing poliovirus, and HIV-1 pro- 
teins were detected 6y immunoblot analysis 
4 weeks after the second inoculation in all 
infected mice (Fig. 4) (1 2). Furthermore, 
the mouse sera were found to contain im- 
munoglobulin G (IgG) and IgA to Nef 

(anti-Nef) at titers of 1 : 100 to 1 : 800 (Fig. 
5A). 

Finally, to  determine if recombinant po- 
liovirus can stimulate mucosal immune re- 
sponses in primates, we performed a prelim- 
inary experiment in which a cynomolgus 
monkey was infected by rectal inoculation 
with mo-hnef (13). Within 2 weeks, Nef- 
specific serum IgG and IgA (Fig. 5B) and 
secretory IgA (Fig. 5C) were detected at 
levels comparable to those seen in monkeys 
(6) and humans (1) immunized with live- 
attenuated poliovirus vaccines. 

Poliovirus recombinants may ultimate- 
ly allow simultaneous vaccination against 
multiple pathogens through preparation 
of a "cocktail" of  oliov virus recombinants 
carrying antigenic determinants derived 
from these pathogens. Mucosal immune 
responses induced by poliovirus vectors 
may limit pathogen replication at the por- 
tal of entry, although this hypothesis re- 
mains to be tested. In ~ r i n c i ~ l e ,  similar 

L .  

vaccine vectors could also be derived 
from attenuated strains of other viruses 
that use proteolytic processing mecha- 
nisms, such as other picornaviruses or 
flaviviruses. 
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Prophylactic Vaccines, Risk Behavior Change, 
and the Probability of Eradicating 

HIV in San Francisco 
S. M. Blower and A. R. McLean 

Theory is linked with data to assess the probability of eradicating human immunodefi- 
ciency virus (HIV) in San Francisco through the use of prophylactic vaccines. The nec- 
essary vaccine efficacy levels and population coverage levels for eradication are quan- 
tified. The likely impact of risk behavior changes on vaccination campaigns is assessed. 
The results show it is unlikely that vaccines will be able to eradicate HIV in San Francisco 
unless they are combined with considerable reductions in risk behaviors. Furthermore, if 
risk behavior increases as the result of a vaccination campaign, then vaccination could 
result in a perverse outcome by increasing the severity of the epidemic. 

M a s s  vaccination campaigns against HIV 
will be initiated after vaccine efficacy has 
been established by phase 111 clinical trials. 
However, before the vaccination campaigns 
begin it is important to determine the po- 
tential epidemiological impact of the vac- 
cines. Previouslv we have formulated and 
analyzed a transmission dynamic model of 
HIV in order to develov a auantitative 
framework for assessing the utility of pro- 
vhvlactic vaccines for e~ idemic  control 
i that  is, for eradication aAd for noneradi- 
cating control) ( I ) .  Here we link this the- 
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oretical work with a svecific data set to 
assess 'whether it will b: possible to eradi- 
cate HIV in San Francisco through the use - 
of prophylactic vaccines. Data from the San 
Francisco Young Mens Health Study 
(SFYMHS), which is an  HIV transmission 
study o'f young gay men, were used in the 
analysis. Specifically for San Francisco, 
three questions were addressed: (i) What 
proportion of the young gay community 
would have to be vaccinated in order to 
eradicate HIV, (ii) how effective would the 
vaccines have to be to ensure epidemic 
eradication, and (iii) what effects could 
changes in sexual risk behavior have on the 
impact of mass vaccination programs? 

Vaccine efficacy is generally calculated 
with clinical trial data and a standard defi- 

nition of efficacy, where efficacy is defined 
as 1 - relative risk. Incidence rates deter- 
mine the magnitude of the relative risk 
between the vaccinated and the placebo 
groups; hence, the calculated efficacy level 
will depend on the length of the clinical 
trial (that is, efficacy is time-dependent) 
(2-4). Furthermore, the standard definition 
of vaccine efficacy does not provide a 
means for including the specific mecha- 
nisms of vaccine failure. Hence, previously 
we formulated a new measure of efficacv 
(that we named vaccine impact) so that we 
could (i) examine the effects of s~ecif ic  . , 
mechanisms of vaccine failure and (ii) de- 
rive a time-independent summary measure 
of vaccine imperfection (that is, efficacy) 
that could be used to calculate the critical 
vaccination coverage required for epidemic 
eradication (1). This new measure of effi- 
cacy was derived while the effects of mass 
vaccination programs were modeled on  the 
transmission dynamics of HIV in a gay com- 
munity. The  transmission model consisted 
of four ordinary differential equations; the 
model structure is described elsewhere (1 ). 
Our model included three mechanisms of 
vaccine failure: take ( the fraction of vac- 
cine reci~ients in whom the vaccine has 
any immunological effect at all), degree 
(the degree of reduction in susceptibility 
per sexual partnership for those in whom 
the vaccine takes), and duration (the dura- 
tion of vaccine-induced immunity) ( I  ). We 
named our efficacy measure the impact of 
the vaccine (+) (therefore efficacy and im- 
pact are synonyms) (1 ); throughout this 
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