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Stress Triggering of the 1994 M = 6.7 Northridge, 
California, Earthquake by Its Predecessors 

Ross S. Stein, Geoffrey C. P. King, Jian Lin 

A model of stress transfer implies that earthquakes in 1933 and 1952 increased the 
Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 
earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier 
Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas 
where its aftershocks and surface faulting occurred. Together, the earthquakes with 
moment magnitude M r 6 near Los Angeles since 1933 have stressed parts of the Oak 
Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-lnglewood 
faults by more than 1 bar. Although too small to cause earthquakes, these stress changes 
can trigger events if the crust is already near failure or advance future earthquake oc- 
currence if it is not. 

T h e  17 January 1994 Northridge earth- aftershocks were sparse where the stresses 
quake was the most costly shock in the are calculated to have dropped. 
history of the United States, underscoring We calculate the Coulomb stress 
the vulnerability of urban areas to earth- change caused by one earthquake on the 
quakes. The event struck on a blind or rupture surface of a subsequent shock or 
buried thrust fault ( 1 )  inclined to the 
south. The 1971 M = 6.7 San Fernando 
earthquake struck on adjacent thrust 
faults inclined to the north (2). Both 
earthquakes were responses to crustal 
compression across the greater Los Ange- 
les area. Not only did aftershocks of the 
San Fernando (3) and Northridge (4) 
earthquakes spatially overlap (Fig. I ) ,  but 
the 23-year span between the events is 
small relative to their probable thousand- 
year repeat times ( 5 ) ,  suggesting that the 
two shocks are related. Here we argue that 
the San Fernando shock increased stress 
at the future Northridge rupture zone by 
up to 2 bars, potentially advancing its 
occurrence by two decades. This hypoth- 
esis is supported by the observation that Fig. 1. Overlapping aftershocks of the 1971 San 
aftershocks of the 1971 and 1994 earth- Fernando (blue; first year, M 2 2) and 1994 
quakes were concentrated where the Northridge (red; first 24 days, M 2 3) earth- 
stresses are calculated to have risen, and q'Jakes.S'tesof ma~~edsecondar~ surface fault- 

ing or cracked ground (green) (19): N-CP, 
Northridge-Canoga Park; GH, Granada Hills; PC, 

R. S. Stein, U.S. Geological Survey, Mail Stop 977. Menlo potrero Canyon; DR, Davidson Ranch. Faults: 
Park. CA 94025, USA. E-mail: stein@andreas.wr.usgs.gov. o . ~ , ,  oak R ~ ~ ~ ~ ;  S,S,, Santa Susana; s ,~ , ,  sari 
G. C. P. King, lnstitut de Physique du Globe. Strasbourg 
67084, France. E-mail: king@klakmuf.u-strasbg.fr. Fernando; M.C., Malibu Coast; S.M., Santa 
J. Lin, Woods Hole Oceanographic Institution, woods Monica; N.-I., Newport-lnglewood. Cross-section 
Hole. MA 02543, USA. E-mail: jian@galileo.whoi.edu. orientations of Fig. 3 are also shown. 

SCIENCE VOL. 265 2 SEPTEMBER 1994 



on a known fault (6). The tendency of 
rocks to fail in a brittle manner is thought 
to be a function of both shear and con- 
fining stresses, commonly formulated as 
the Coulomb criterion. The Coulomb 
stress change depends on the geometry 
and slip of the earthquake, the geometry 
and sense of slip of the fault or surface of 
interest, and the effective coefficient of 
friction (7-9). We used this method to 

estimate how successive southern Califor- 
nia earthquakes transferred stress. 

We further developed a Coulomb cri- 
terion for small earthquakes or after- 
shocks. Because small shocks can occur 
on small isolated faults, which exist with 
a wide variety of orientations throughout 
the crust, the faults most likely to slip are 
those optimally oriented for failure as a 
result of the regional stress and the stress 

change caused by a preceding earthquake 
(9, 10). Aftershocks of several strike-slip 
earthquakes (the 1979 Homestead Valley 
and the 1992 Joshua Tree, Landers, and 
Big Bear shocks) have occurred in regions 
where the stress change on optimally ori- 
ented vertical faults was increased by 
>0.3 bar, and their aftershocks were 
sparse where the stress dropped by the 
same amount ( I  I). For this study, we 

Fig. 2. Map views of calculated Coulomb stress changes on optimally 
oriented strike-slip or thrust faults in an elastic half-space for a regional 
stress direction of N16"E and a friction coefficient = 0.4. Earthquakes 
that caused stress changes are denoted by purple-filled rectangles with 
teeth on the upper edge; future sources are unfilled rectangles. The color 
gradients representing stress change saturate below the calculated peak 
stress changes. The southern California coastline is a white-enclosed 
black line. L.A., Los Angeles. (A) Calculated stress change caused by 
the 1933 M = 6.4 Long Beach and 1952 M = 7.3 Kern County earth- 
quakes, sampled at a depth of 10 km, showing sites of the future San 

Fernando and Northridge earthquakes. (B) Stress changes caused by 
the 1971 M = 6.7 San Fernando earthquake. The most positive stress 
change at a depth of 3 to 10 km is shown, along with 5 years of post- 
earthquake M - 1 shocks [number of stations ? 4, root-mean-square 
(rms) timing error 5 1 s]. (C) Stress changes caused by the 1994 M = 6.7 
Northridge earthquake. The most positive stress change at a depth of 3 to 
10 km is shown, along with M 2 1 shocks during 17 January to 12 July 
1994 (rms timing error 5 0.3 s). (D) Effect of all M ? 6 shocks within 125 
km of Los Angeles since 1933, with stress change calculated at a depth of 
10 km. 
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extended the method to consider the 
stress changes accompanying thrust earth- 
quakes. We first calculate the optimally 
oriented vertical strike-slip and dipping 
thrust faults. We then resolve the earth- 
quake-induced Coulomb stress on these 
planes and find the stress change that 
most promotes failure (1 2). 

We calculate that the 1933 M = 6.4 
Long Beach (13) and 1952 M = 7.3 Kern 
County (14) shocks raised the Coulomb 
stress at the site of the future San Fer- 
nando and Northridge shocks by at least 
0.1 bar. The 0.1- to 0.2-bar stress changes 
shown in Fig. 2A are for an elastic half- 
space and thus do not include the effects 
of post-seismic asthenospheric relaxation 
during the two to six decades following 
the 1933 and 1952 earthquakes. The 
stress in the seismogenic crust must rise as 
the asthenosphere relaxes after the earth- 
quakes. Complete relaxation of the as- 
thenosphere, simulated by replacing the 
halfspace with a faulted 12.5-km-thick 
plate overlying an inviscid fluid, would 
yield a 0.8-bar stress rise at  San Fernando 
and a 0.9-bar rise at Northridge. 

Fig. 3. Cross-sections of 
Coulomb stress chang- 
es on optimally oriented 
faults, shown with M 
2 2 aftershocks located 
within 4 km of the sec- 
tion lines shown in Fig. 
1. Sites of surface fault- 
ing are keyed in Fig. 1. 
(A) Stress changes cal- 
culated for the San Fer- 
nando earthquake on op- 
timally oriented strike-slip 
or thrust faults along a 
section connecting the 
1971 and 1994 main 
shocks. Focal mecha- 
nisms of these after- 
shocks are largely strike- 
slip (3). (B) Section 
through the center of the 
Northridge aftershock se- 
quence showing stress 
changes on optimally ori- 
ented thrust faults, be- 

Our calculations reveal that the 197 1 
San Fernando earthquake raised the Cou- 
lomb stress an additional 2 bars at the 
site of the future Northridge earthquake 
and 0.5 bar at the site of the future 1987 
M = 6.0 Whittier Narrows shock (Fig. 
2B). In both cases, the stress change 
was greatest on strike-slip faults, even 
though the 1987 and 1994 earthquakes 
were largely thrust events (15). A band of 
1971 aftershocks extended to the future 
1994 rupture zone (Fig. I), and after- 
shocks in this band became more concen- 
trated during the next 5 years (Fig. 2B). 
Aftershocks also s ~ r e a d  to the future 
Whittier Narrows rupture zone. Seismici- 
ty filled most of the lobes where stress is 
calculated to have risen by >0.3 bar and 
was nearly absent where the stress is cal- 
culated to have dropped by >0.5 bar (Fig. 
2B). During the 5- or 10-year period be- 
fore the San Fernando earthquake, seis- 
micity was nearly absent in the lobes that 
extended to the future Northridee and ., 
Whittier Narrows ruptures, reinforcing 
the deduction that the San Fernando 
earthquake stress changes triggered the 

mally oriented thrust faults 
along a section through 
the center of the largest 
(M = 6) aftershock, l0km 
west of the Northridge 
main shock. 

small shocks (1 6). The association of San 
Fernando aftershocks with regions of 
Coulomb stress rise is also evident in cross 
section (Fig. 3A). San Fernando after- 
shocks locate near the shallow part of 
the future Northridge rupture, where 
stress changes favor strike-slip or oblique 
failure. 

Most of the aftershocks of the 1994 
Northridge earthquake occurred in re- 
gions where the stress is calculated to 
have increased by >0.3 bar as a result 
of the fault slip; few aftershocks occurred 
where the stress is calculated to have 
dropped (Fig. 2C). The rate of occurrence 
of 1 I M 5 2 shocks appears to have 
climbed in metropolitan Los Angeles, 
30 km southeast of the main shock, 
where the stress is calculated to have 
risen. The diffuse distribution of after- 
shocks above and up-dip of the thrust 
fault (Fig. 3B) is explained by the Cou- 
lomb stress increases associated with blind 
fault slip (17). Some 11 hours after the 
main shock, the Northridge aftershock 
zone expanded abruptly 6 km westward 
with a M = 6 aftershock (18) in an area 
where the calculated rise in Coulomb 
stress caused by the initial rupture was 
0.75 bars (Figs. 2C and 3C). Surface fault- 
ing, cracking, and concentrated surface 
deformation were found at  several sites 
after the Northridge earthquake (Fig. I), 
and these contributed significantly to 
the earthquake damage (19). The calcu- 
lated increases in Coulomb stress at 
these sites are large (Fig. 3, B and C), 
suggesting that the ground disturbance 
was the product of the off-fault changes 
in stress or strain in the compliant 
surface sediments. Thus, the location of 
the recorded 1 I M 5 6 aftershocks and 
surface faulting in the Northridge se- 
quence is consistent with a model of 
stress triggering by the initial earthquake 
rupture. 

The cumulative effect of all M 2 6 
earthquakes near Los Angeles since 1933 
(Table 1) is calculated to be a decrease in 

Table 1. The M 2 6 earthquakes within 125 km of 
Los Angeles since 1933. 

Earthquake Date Refer- ence 
- 

Long Beach 10 Mar 1933 6.4 (13) 
Kern County 21 Jul 1952 7.3 (14) 
San Fernando 9 Feb 1971 6.7 (2 
Whittier 

Narrows 1 Oct 1987 6.0 (28) 
Joshua Tree 23 Apr 1992 6.1 (29) 
Landers 28 Jun 1992 7.4 (30) 
Big Bear 28 Jun 1992 6.6 (31) 
Northridge 17 Jan 1994 6.7 (4.32) 
Northridge 

aftershock 17 Jan 1994 6.0 (18) 
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