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Real-Time Parallel Computation and 
Visualization of Ultrasonic Pulses in Solids 

R. S. Schechter, H. H. Chaskelis, R. B. Mignogna, P. P. Delsanto 

Parallel processing has changed the way much computational physics is done. Areas 
such as condensed matter physics, fluid dynamics, and other fields are making use of 
massively parallel computers to solve immense and important problems in new ways. 
Simulating wave propagation is another area that has benefited through the use of parallel 
processing. This is graphically illustrated in this article by various numerical simulations 
of ultrasonic pulses propagating through solids carried out on a massively parallel com- 
puter. These computations are accompanied by visualizations of the resulting wavefield. 
The calculations and visualizations, together: can be completed in only seconds to several 
minutes and compare well with experimental data. The computations and parallel pro- 
cessing techniques described shouldbe important in related fields, such as geophysics, 
acoustics, and mechanics. 

Mathematical models of our physical world 
cannot always be solved analytically. Ana- 
lytic techniques usually require simplifica- 
tions, which are not present in the real 
world. Problems also may involve huge 
amounts of data. Thus, researchers must 
rely more on numerical tools than in the 
past. 

Massively parallel architectures are 
changing the way much computational 
physics is done. Many physical problems, by 
nature, lend themselves to parallel process- 
ing. For example, computations in con- 
densed matter physics involve large num- 
bers of degrees of freedom, all obeying the 
same basic principles (1 ). In Monte Carlo 
algorithms, frequently used in such prob- 
lems, the rules for updating a degree of 
freedom are the same throughout the lattice 
(1). Because the physics is uniform or ho- 
mogeneous in these problems, they can bet- 
ter be solved by parallel rather than serial 
computation. Data-parallel, high-level pro- 
gramming languages, such as CM Fortran, 
allow researchers to express operations in a 
parallel form and harness the power of a 
parallel computer without being intimately 
familiar with the details of the machines, 
thus greatly simplifying the programming 
task. 

Parallel Processing in Physics 

Two-dimensional (ZD) strongly correlated 
electronic systems have attracted enormous 
attention recently, prompted by the recent 
discovery of high-temperature superconduc- 
tivity (2, 3). This area of quantum physics 
includes magnetic properties of solid crys- 
tals and bosons modeling superfluids and 
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Cooper pairs in superconductors. This class 
of 2D quantum many-body systems rarely 
admits reliable analytical treatments. How- 
ever, numerical simulations of these svstems 
with quantum Monte Carlo techAiques, 
programmed to take full advantage of par- 
allel architectures (4), do provide quantita- 
tive results that can be com~ared  with ex- 
perimental results. These simulations have 
helped to describe and explain what hap- 
pens inside these materials (5, 6). 

In com~utational fluid mechanics. mas- 
sively parallel implementation of vortex 
methods has been developed, which offers 
an alterna~ive to the traditional finite dif- 
ference techniaues for the calculation of 
viscous, incompressible, turbulent flow (7, 
8).  The results can shed light on the fun- 
damental issues in study of flows with high 
Reynolds numbers and on engineering is- 
sues such as wake structure, eddies, drag 
forces, and flows past bodies (8).  he corn: 
putational techniques rely on the parallel 
im~lementation of N-bodv solvers where 
the goal is to comDute the total force on 
eachUbody, which consists of the superposi- 
tion of the individual forces exerted by all 
other bodies. 

The N-bodv simulation has become a 
fundamental tool in the study of many com- 
plex systems. Bodies are understood to be 
mass,, charge, or vortex elements. Starting 
from basic ~hvsical  interactions such as . , 

gravitational, Coulombic, Biot-Savart, or 
van der Waals forces, one can follow the 
dynamical evolution of a system of N bodies 
(9). Much effort has been sDent on the 
optimization of N body algo;ithms, espe- 
cially for parallel architectures (9). Areas of 
application include accelerator beam dy- 
namics, astrophysics (galaxy formation and 
large-scale structure), computational biol- 
ogy (protein folding), chemistry (molecular 
structure and thermodynamics), electro- 

magnetic scattering, fluid mechanics (vor- 
tex method), molecular dynamics, and plas- 
ma physics. An N-body simulation is usual- 
ly statistical in nature and requires a large 
number of bodies, typically millions, for 
accuracy. Such a simulation may also be 
deterministic in the case where the N bod- 
ies represent the entire system. These types 
of simulations have been used in astrophys- 
ics to model galaxy formation and, more 
recently, the formation of the structure of 
the early universe to determine the relative 
proportions of dark and luminous matter. 
Running on massively parallel supercom- 
puters, these simulations have now become 
large enough and fast enough to give pre- 
dictions sufficiently detailed to be com- 
pared with astronomical observations. 

Molecular dynamics for the study of dy- 
namical properties of solids and liquids has 
been a useful tool for decades, but it is only 
recently that massively parallel computers 
have made possible the study of realistically 
sized systems. A cube of 1000 atoms on a 
side only represents about 0.5 p,m cubed. 
This is a very small volume of material, yet 
it contains lo9 atoms. Realistic calculations 
in materials science require system sizes in 
this range if the dynamics of defects like 
dislocations and grain boundaries are to be 
studied. Systems of 10' particles interacting 
under the influence of a Lenard-lones DO- 

tential have been solved with a Connection 
Machine 5 (CM-5) (10). By carefully map- 
ping this problem onto the architecture of 
the CM-5 and coding the kernel of the code 
(which implements-the force calculation) 
in the assembler language of the CM-5 
vector units, calculation rates of about 50 
billion floating-point operations per second 
(50 Gflops) were obtained (1 0). This speed 
was obtained with 131 million particles, 
each interacting with 65 neighbor?. Some 
2D simulations of the fracture dvnamics of a 
piece of material, with 2 million atoms, 
pulled apart in a fracture experiment have 
also been done ( 10). 

Modeling Ultrasonic Wave 
Propagation 

Wave propagation is very important in elec- 
tromagnetic~, acoustics, seismology, medical 
imaging, nondestructive testing of materials, 
and many other areas of physical science. The 
phenomenon of waves propagating is inher- 
ently local in the sense that a disturbance is 
propagated by locally interacting particles. 
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Expressed in a different way, the wave field 
only depends on local field values. There is no 
long-range potential involved, in contrast to 
the molecular dynamic problems described 
above, where the potential function may not 
fall off that rapidly with distance (this means 
that distant processors have to exchange in- 
formation in a parallel computation). Because 
wave propagation is inherently local, only 
neighboring processors need to exchange in- 
formation, a condition favorable for speed. 

The physics of wave propagation is also 
uniform in that each particle obeys the 
same law, namely a wave equation. This is 
true even at boundaries between different 
materials, where the same equation holds 
but boundarv conditions exist, which must 
be accounted for accurately. The physics7ii 
interfaces or boundaries is a major problem 
in the modeling of wave propagation, espe- 
cially for parallel computation. 

Our  articular area of interest is in ul- 
trasonic nondestructive evaluation (NDE), 
based on  the propagation of elastic waves in 
solids. Analytical modeling has been done 
for certain problems in elastic wave propa- 
gation and scattering. However, it is virtu- 
ally impossible to model and visualize by 
analytic means the full complexity of an 
ultrasonic transducer radiating into a solid - 
and the extremely complex wavefield re- 
sulting from scatterers, and a large numeri- 
cal simulation is reauired. The simulation 
must be both fast and accurate to perform 
computations spanning many wavelengths 
and to capture the complexities of a real 
material. T o  accomplish this, we developed 
a parallel processing approach. 

Use of the Connection Machine to 
model wave propagation is rooted in two 
basic ideas. First, the dynamics of the phys- 
ical fields described here are inherently par- 
allel, in that each point modeled obeys the 
same physical law, namely the elastic wave 
equation. Second, the time evolution of the 
basic computed quantities depends only on 
the field values at the point considered and 
the immediate neighbors. Therefore, there 
is strong motivation for using fine-grain 
massive parallelism for wave propagation. 

The parallel computer we used is a 
16,384 ( 16K) processor version of the Con- 
nection Machine 200 (CM-200) manufac- 
tured by Thinking Machines Corporation. 
A full-size CM-200 consists of 65,536 Dro- 
cessors, each with 128 kilobytes of memory, 
for a total of 8 Gbytes. There are 4096 
processing chips, each with 16 processors, 
connected in a 12-dimensional hypercube 
architecture (1 1 ). Each pair of chips (32 
processors) shares a floating point accelera- 
tor. The computer operates in SIMD (single 
instruction, multiple data) mode. This 
means that the same instruction stream is 
broadcast to every processor. A t  the Naval 
Research Laboratory (NRL), there is a 16K 

processor version of the full CM-200 with 2 
Gbytes of memory. 

The CM-200 supports two modes of 
communication. One is called NEWS 
(North East West South), which connects 
the processors in a multidimensional Carte- 
sian grid and favors communication be- 
tween nearest neighbors. Because a central 
finite difference equation in cartesian coor- 
dinates is used to discretize the wave equa- 
tion, NEWS communication fits the algo- 
rithm well. The other available mode of 
communication is handled by a router, 
which allows general communication be- 
tween any two processors, not just neigh- 
boring ones. 

Finite Difference Formulation 

Over the years, two computational finite 
difference approaches have been examined. 
One, called the homogeneous formulation, 
considers a heterogenous medium to be a 
collection of homogeneous linear isotropic 
regions each characterized bv constant val- " 
ues of densitv and elastic Darameters. The 
elastic wave equation for homogeneous iso- 
tropic solids governs the motion in each 
region. The boundary conditions across all 
interfaces separating different regions are 
satisfied explicitly (1 2). 

The other, the heterogeneous approach, 
uses the elastic wave equation for hetero- 
genous materials. where the elastic con- - 
stants vary spatially. The result of con- 
structing finite difference equations from 
the wave equation for heterogenous mate- 
rials is that different densitv and elastic 
parameters may be-associated with each grid 
point (13, 14). The boundary conditions 
are satisfied implicitly. This approach, how- 
ever, may give rise to large errors for cases 
involving large gradients in material prop- 
erties across boundaries (15). The discreti- 
zation across an  interface depends on  the 
distance over which the chanhe in material " 
properties is assumed to occur. In the vicin- * - 
ity of a boundary there is no  unique way of 
discretizing the heterogeneous wave equa- 
tion. To  our knowledge, the literature indi- - .  
cates that the two approaches have never . - 
given identical results across a boundary 
separating two different materials. 

Delsanto et al. (15) have derived a rig- 
orous homogeneous formulation that im- - 
poses continuity of stresses and displace- 
ments across boundaries of four homoge- 
nous isotropic cells, each with different ma- 
terial properties, surrounding a crosspoint. 
This crosspoint formulation makes it possi- 
ble to use the same difference equations at 
all points, including boundaries between 
different materials, where it is onlv neces- 
sary to change the coefficients. This formu- 
lation is the main ingredient for paralleliz- 
ing the problem of elastic wave propaga- 

tion. It also permits the modeling of geo- 
metrically complex interfaces such as 
scatterers by the simple use of a small 
enough grid spacing. These same difference 
equations may also be derived from the 
heterogenous wave equation with the use of 
the results of the homogeneous approach as 
a guide. Thus, the two approaches yield 
identical finite difference equations. Com- 
parisons with other finite difference formu- 
lations are shown in (15). 

Computation 

The governing equation, used here to mod- 
el ultrasonic waves in solids, is the elastic 
wave equation. In two dimensions, the 
equation reduces to two coupled equations 
for u and v 

d2u a2v + p 1 +  (X + 2 ~ ) -  
dy dxdy 

(1)  

where u and v are the displacements in the 
x and y directions, t is time, X and F are the 
Lam6 constants, and p is the density. This 
equation is valid for each of the homoge- 
neous, isotropic cells, which collectively 
make up the heterogeneous material. When 
the boundary conditions (continuity of nor- 
mal and tangential displacements and stresses 
across interfaces) are imposed, the resulting 
finite difference equation for u(t + At,i,j) is of 
the form 

+ cll(i,j)v(t,i + 1,j - 1) 

+ c12(i,j)v(t,i + l j )  + cl3(ij)v(t,i,j + 1) 

+ c14(i,j)v(t,i - 1,j) + c15(i,j)v(t,i,j - 1) 

(2) 
A n  analogous equation for u(t + At,i,j) has 
also been derived. These are explicit step- 
ahead central difference equations. They 
are also called iteration equations. The 
c(i,j)'s are the appropriate weights or coef- 
ficients that make the solution valid at 
every node point, at interior nodes, at 
boundaries between different materials, and 
at free surfaces (stress-free boundaries). 
They depend on the material properties of 
the four cells surrounding the node point 
(ij)  (crosspoint) (15). Because the form of 
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these equations 1s ldentlcal at each node, A 
they may be computed slmultaneously. The 
CM Fortran compiler allocates the vanGus 
arrays to processors. The u(i,j) and v(ij), for 
example, are located m processor (I,]). The 
(1,~)'s are lndlces corresponding to spatlal 
coordinates and represent a plane of proces- 
sors m the CM. The lndlces t - At, t ,  and 
t + At represent three consecutive times 
and are located serlally down the processor's 
memory, giving rise to three spatial planes 
of displacements located in memory that 
change with every time step. In Eq. 2, only 1 
nearest neighbors in space, corresponding 
to nearest neighbor processors, have to ex- I 
change data, greatly minimizing communi- 
cation, as is necessary for speed in parallel I 
computations. 

Discretization. The grid spacing is deter- 
mined by the shortest wavelength occurring 
in the solid, which is related to the highest 
frequency in the pulse and the lowest shear 
wave velocity in the specimen. We use 17 
mesh points per shortest wavelength to get 
sufficient accuracy. Once the lattice step size 
E is determined, the time step At may be 
chosen according to the stability requirement 
for the difference equations, called the von 
Neumann stability criterion. For the finite 
difference equations used, this yields (16) 

where v, is the longitudinal wave velocity 
and v, is the transverse or shear wave 
velocity. 

Speed of computation. The finite differ- 
ence equations have been timed on a CM- 
200 and more recently on a CM-5. A CM- 
200 with 64K processors executes the dif- 
ference equations (Eq. 2) for a grid size of 
1024 by 1024 node points for 1000 time 
steps at about 3.8 Gflops. This was obtained 
by timing the code fragment containing the 
difference equations on an 8K processor 
machine and linearly scaling this speed up 
by a factor of 8 to get the speed on a 64K 
processor machine. The same code frag- 
ment runs at 6.8 Gflops on a CM-5. This 
implies that the entire computational grid is 
updated every 10.8 ms. For a larger grid, 
4046 by 4096 node points, the speed in- 
creases to 7.7 Gflops. 

The CM-5 is a newer and more powerful 
parallel supercomputer than the CM-200, 
with an architecture based on from 32 to 1024 
processor nodes networked together in a fat 
tree topology (so called because some branch- 
es are "fatter" with higher bandwidths than 
others). It can be programmed to run in 
MIMD (multiple instruction, multiple data) 
as well as SIMD mode. Each processor node 
has associated with it four floating-point vec- 
tor units, four memory banks, and a network 
interface chip. The CM-5 at NRL (called 

Fig. 1. (A) Simulated images of a longitudinal pulse scattering from a void in glass at three different times. 
(B) Experimental photoelastic images. [Reprinted from (18), Academic Press] 

CM-5E) is configured with 256 SPARC pro- 
cessor nodes each running at 40 MHz, with a 
combined memory of 32 Gbytes. 

The code that we timed was written 
entirely in the data-parallel language CM- 
Fortran, with no special microcoded rou- 
tines to further optimize communication. 
When special microcoded communication 
routines are used to implement the differ- 
ence equations (stencil operations), consid- 
erably higher speeds even on a CM-200 are 
attainable (1 7). 

A 1024 by 1024 grid requires 16 times 
the number of physical processors available 
on a CM-200. For this and larger grids, the 
memory of each processor is subdivided into 

many virtual processors (VP), simulating 
physical processors. The VP ratio is the 
number of virtual processors divided by the 
number of physical processors. For example, 
a 1K by 1K grid would require a VP ratio of 
16 for a machine with 64K processors. For a 
CM with 8K processors, the VP ratio would 
be 128. The speed in terms of flops in- 
creases as the VP ratio increases, leveling 
off at a VP ratio that is dependent on the 
problem being addressed and the size of the 
CM machine being used. This increase in 
speed with VP ratio may be attributed to 
the fact that there is an initial time spent to 
broadcast the instructions to the processors 
or a start-up overhead, after which each 

Fig. 2. (A) Simulated images of a longitudinal pulse scattering from a crack in glass at three different times 
(B) Experimental photoelastic images. [Reprinted from (18), Academic Press] 
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Fig. 3. (A) Simulated images of a longitudinal pulse scattering from a crack oriented at 90" in glass at three 
different times. (B) Experimental photoelastic images. [Reprinted from (78), Academic Press] 

processor just executes the same instruction 
over and over again by looping over the VP 
set as many times as necessary. 

In addition to updating the difference 
equations in parallel, a parallel graphics 
device was used to visualize the developing 
wavefield in near real time. This graphics 
system, the framebuffer, permits data to be 
transferred in parallel at a rate of 40 Mbytes 
per second from CM processor memory to 
the display as the computation proceeds. 
An array of disks, called the Datavault, 
enables parallel transfers of data at rates 
exceeding 25 Mbytes per second. The Data- 
Vault at NRL holds 10 Gbytes (and can be 

expanded to hold 60 Gbytes) and thus is 
well suited to store and transfer massive files 
quickly. The entire process of reading the 
material properties for each cell, feeding the 
source wave in, and updating the difference 
equations 1000 times takes only seconds to 
several minutes, depending on the grid size. 
The complexity of the material plays no 
role in the speed. Thus, once the difference 
equations are known and expressed in a 
form suitable for parallel computations, 
complicated problems in elastic wave prop- 
agation may be easily computed and the 
accompanying huge data sets visualized in 
near real time. 

Fig. 4. Simulated images of a longitudinal pulse scattering from an aluminum inclusion in Plexiglas at six 
different times. 

Results 

Various wave types, both longitudinal and 
shear, have been used as sources. These 
include pulses that are (i) Gaussian in space 
and time, (ii) planar in space and Gaussian 
in time, (iii) rectangular in space and Gaus- 
sian in time, and (iv) Gaussian in space and 
a Gaussian-modulated tone burst in time. 
The computation proceeds as follows. The 
first and second tick (time step) of the 
source wave displacements are loaded into 
row 1 of the computational grid, at two time 
levels, to start the calculation. The u and v 
displacement values at every grid point are 
then updated simultaneously. The next tick 
of the source wave is loaded in, and all of 
the grid points are updated again. 

The various cases modeled include lay- 
ered materials and material with flaws such 
as voids, cracks, and inclusions. Materials 
composed of two layers, with a plane wave 
incident at an angle, were used to compare 
the computation with theory. The ampli- 
tude and angles of the reflected and trans- 
mitted waves agree with the theory to with- 
in 1%. 

The results shown are images of the scat- 
tering of ultrasonic pulses from cracks, 
voids. and inclusions. These cases are of 
great interest to the NDE community, 
where the detection and sizine of flaws are 

u 

of the utmost importance. The images 
shown are gray scale, 256 pixels by 256 
pixels, and represent snapshots of the am- 
plitude of the displacement field. Movies 
have been produced that consist of 1000 
time steps or snapshots generated in real 
time as the computation proceeded. They 
show the dvnamic evolution of the entire 
wavefield, illuminating in detail the forma- 
tion of all waves that arise in the process of 
scattering. 

Figure 1A shows a simulation of a lon- 
gitudinal Gaussian pulse of duration 0.423 
ps in glass scattering off a circular cylindri- 
cal hole or void 5 mm in diameter. The 
incident ~ u l s e  moves toward the hole and is 
reflected from the surface, producing cylin- 
drical longitudinal and cvlindrical shear - 
waves until the incident wave becomes tan- 
gent to the hole surface. There, instead of 
being blocked, the incident wave creeps 
around the hole wall and into the geometric 
shadow zone. The creeping longitudinal 
wave is accompanied by a conjointly creep- 
ing shear wave. Figure 1B shows the exper- 
imental photoelastic images (1 8) for a sim- 
ilar case. These are dynamic photoelastic 
images obtained with a yttrium-aluminum- 
garnet (YAG) laser emitting pulses of about 
10 ns in duration with an adjustable time 
delav of 0.05 to a few microseconds. The 
experimental ultrasonic pulse is planar, 
whereas the simulated pulse more resembles 
a point source; however, there is still great 
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similarity between the simulated and exper- 
imental wavefields. In addition, in the ex- 
perimental specimen, the hole is further 
into the specimen than in the computation. 
This means that the shear lobes, which lag 
behind the faster longitudinal front, get 
further behind this front in the experimen- 
tal case when the pulse interacts with the 
void. 

Figure 2A shows simulated images of a 
Gaussian pulse of duration 0.423 p,s inci- 
dent on a crack 5 mm in length and 0.083 - 
mm wide in glass. The incident wave scat- 
ters off of the front tip edge and then the 
back tip edge and the reflected longitudinal 
and shear waves from the front face. The 
circular longitudinal and shear waves excit- 
ed at each tip spread out until they lztkr 
meet and rescatter from the opposite tip. 
Figure 2B shows the experimental pho- 
toelastic images of scattering from a similar 
crack (18). 

Figure 3 A  shows the same pulse scatter- 
ing from a crack rotated by 90" from that in 
Fig. 2. The images show various first-order 
scattered waves of type longitudinal, shear 
and Rayleigh, and head wave generated at 
the front tip. These waves spread out or 
glide along the crack faces and encounter 
the far tip and are all scattered again to 
form second-order scattered waves. The 
backward gliding portions of these second- 
order scattered waves rescatter at the near 
tip to form third-order scattered waves. 
These cannot be easily seen in the figure 
because of their low amplitude. Figure 3B 
shows a similar pattern for the photoelastic 
visualizations of this case (18). 

Figure 4 shows a series of images of a 
1-p,s Gaussian pulse in plexiglas scattering 
off an aluminum circular cylindrical inclu- 
sion with a diameter of 4.66 mm. Unlike 
the void case, there is a transmitted wave, 
which penetrates the inclusion or "target" 

waves creeping on the aluminum side of the 
circumference, and reflected and transmit- 
ted waves at the far side of the inclusion. 
The scattered wavefield produced by the 
inclusion is very complicated compared to 
that of the void, with many internal reflec- 
tions in the inclusion and many more mode 
conversions from longitudinal to shear and 
vice versa. 

Conclusions and Future 
Directions 

The techniques used in these parallel com- 
putations are markedly different from those 
used for serial computations because the 
emphasis is on grouping similar data opera- 
tions and expressing them in a parallel form 
instead of minimizing the number of se- 
quential steps to attain speed. Parallel pro- 
cessing is a mode for scientific computa- 
tions that can handle huge and complex 
problems quickly. Because the visualization 
of large data sets (in the form of movies) 
may be done as the computation proceeds 
in near real time, many cases may be ana- 
lyzed quickly, thereby affording the oppor- 
tunity for a greater understanding of the 
phenomenon being studied. In addition, 
the movies could be of great value in giving 
students insight into the properties of elas- 
tic waves. 

The  computations could be used to 
provide simulated data sets to test acous- 
tic tomography or other inverse algo- 
rithms and be used as part of the inverse 
calculation procedure itself; for example, 
to provide corrections for refraction and 
scattering (which does not occur with 
x-ray- based tomography). These correc- 
tions could be in the form of curved ray 
paths between every source and receiver 
combination, showing the path of the 
acoustic energy in a detailed way. A n  

iterative algorithm that accounts for these 
corrections would be a large calculation 
but is now feasible with parallel process- 
ing and should give a major improvement 
to the quality of acoustic tomograms. 
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