
well-studied CV, they are present in >80% of the 
chondrules. FOls are rare or absent in the EH, H, and 
L chondrites. No correlation was observed between 
shock grade and the presence or absence of FOls. 
S. E. Haggerty and M. McMahon [Proc. Lunar Plan- 
et. Sci. Conf. 10, 851 (1979)l show FOI-like textures 
from Allende in their figure 1, a, h, and k. 
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be required to form FOls. 

16. Data and procedures were followed as describedby 
R. C. Gilman [Astrophys. J. Suppl. 28, 397 (1974)], 
except for the condition (2nalh)(n2 + k2)"2 > 0.1. 
For this case, Q(a, Q was calculated according to the 
large-particle approximation for K(w) given by H. C. 

van de Hulst [Light Scaftering by Small Particles (Dover, 
New York, 1981), p. 1751, which yields more realistic 
Planck mean absorption cross sections for grains >I 
ym than the extrapolation method used by Gilman. 

17. For a similar evaluation addressing the survival of 
dust within the radiation field associated with super- 
novae, see S. W. Falk and J. M. Scalo, Astrophys. J. 
202. 690 11 975). 

18. R. H. ~ e d ~ n s  ;Ad P. M. Radomsky, Meteoritics 25, 
309 (1 990). 

19. R. A. Robie, B. S. Hemingway, J. R. Fisher, U. S. 
Geol. Sum. Bull. 1452, 363 (1 979). 

20. In estimating peak chondrule temperatures, the 
greatest uncertainties lie in the spherical approxima- 
tion used for prechondrule aggregates and in the 
spectral distribution of the radiation assumed for 
heating. Nonblackbody spectral distributions pro- 
duce comparable results if >90% of the total energy 
is located within the region -0.4 to 10 wm. Addition- 
ally, above -2300 K, molten chondrules may under- 
go significant evaporation; reducing their sizes and 
limiting their peaktemperatures [A. Hashimoto, Geo- 
chem. J. 17, 11 1 (1 983)l. 

21. Unique examples exist where mean chondrule diame- 
ters are -0.02 mm and minumums approach 0.001 
mm, for example, chondrite ALH85085 and a micro- 
chondrule-bearing clast from Piancaldoli. See review in 
(3). 

Saturation of Cubic Optical Nonlinearity in 
Long-Chain Polyene Oligomers 

lfor D. W. Samuel, Isabelle Ledoux, Christophe Dhenaut, 
Joseph Zyss,* Harold H. Fox, Richard R. Schrock, 

Robert J. Silbey 

Thescaling of the cubic nonlinearity y with chain length in polyenic molecules has received 
considerable theoretical attention. Earlier experimental investigations have been restrict- 
ed to oligomers with fewer than 20 double bonds because of problems associated with 
the synthesis and solubility of conjugated molecules. These synthetic difficulties have 
been overcome in the present study by the use of modern living polymerization tech- 
niques. Solution measurements of y as a function of chain length in long-chain (up to 240 
double bonds) model polyene oligomers are reported. A saturation of the increase of y 
with chain length is observed, and the onset of this saturation occurs for chain lengths 
considerably longer than predicted from theory. 

T h e  study of polyenes and their oligomers 
is important for nonlinear optics because 
these materials have large third-order non- 
linearities and because thev are used as 
model conjugated systems aAd as building 
blocks for nonlinear optical molecules (1, 
2). The magnitude of the cubic nonlinearity 
y and its scaling with the number of double 
bonds N have received considerable theo- 
retical attention (3-18). These theories 
range from simple tight-binding (or 
Huckel) models to fully correlated T-elec- 
tron models such as that of Pariser, Parr, 

and Pople (PPP). For small N, a power-law 
dependence y = kNm is found to approxi- 
mate the theoretical results in all models, 
with a between 3 and 6, depending on the 
model used and the calculation. For large N 
(thermodynamic limit), y becomes linear in 
N and y/N therefore becomes constant. 

T&s saturation is predicted to occur at 
different values of N in different models: 
Models such as Huckel that do not include 
electron correlation tend to predict satura- 
tion at rather large N (>50), whereas the- 
oretical models that include electron corre- 
lation predict saturation at smaller N 
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eters in the semiempirical Hamiltonian 
(that is, PPP) that are valid for small mol- 
ecules are also valid for large molecules. If 
this is not so, the calculations may be seri- 
ously in error. Experimental investigation 
has proved difficult as a result of difficulties 
with synthesis and the poor solubility of 
polyenic oligomers. This has restricted ear- 
lier studies to molecules with fewer than 20 
double bonds, and no saturation of y/N has 
been observed thus far (1 9-26). 

The controlled synthesis of long-chain 
conjugated oligomers has recently become 
possible as a result of progress in living 
polymerization techniques (27). We  report 
here measurements of y as a function of N 
in soluble long-chain model polyene oli- 
gomers with up to 240 double bonds (see 
Fig. 1). We  have observed a saturation of 
y/N in these very much longer polyenic 
systems. We  synthesized the molecules by 
cyclopolymerization in a living manner, us- 
ing a molybdenum alkylidene catalyst to 
give a polyenic backbone substituted with 
five- and six-membered rings. This proce- 
dure gives good control over the length of 
the resulting oligomers. Molecular weights 
were measured bv eel uermeation chroma- 

, u  . 
tography against polystyrene, and the poly- 
dispersity was typically 1.2, indicating a 
fairly narrow distribution of chain lengths. 
Full details of the ureuaration and charac- 

A A 

terization of these molecules are given else- 
where (27). 

T h e  third-order nonlinearity y was 
measured in tetrahydrofuran (THF) solu- 
tion by the Maker fringe method, and 
data analysis was ~er formed as ~ r e v i o u s l ~  
described (28). Excitation at 1.91 p m  was 
provided by a longitudinal monomode 
Q-switched Nd:yttrium-aluminum-garnet 



Fig. 1. Chemical structure of the model polyene 
oligomers studied; Et, ethyl. 

4 d 
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Number of double bonds N 

laser, Raman shifted by a hydrogen cell at 
40 bar. Excitation intensities were of the 
order of 100 MW/cm2, and the concen- -g 
tration of solutions was in the range lop6 5 
to  M. The  third harmonic at 636 nm 5 
is just below the onset of the main ab- 
s o r ~ t i o n  band for the molecules. 

The results of these measurements are 
shown in Table 1 and Fig. 2. The value of y 
I 

?O 20 40 60 80 100 120 140 160 180 200 
increases with N ,  reaching a very large val- Number of double bonds N 
ue of (3794 * 500) x electrbstatic 
units (esu) for N = 240 double bonds. 
Indeed, this value is 1000 times what would 
be expected in nonconjugated molecules of 
similar size, and larger by a factor of 40 than 
the y previously reported for N = 16 (24). 
The plot of y/N as a function of N (Fig. 2A) 
clearly shows that y/N saturates. The satu- 
ration is even more evident in Fig. 2B, 
which shows a plot of N against p = 

d[ln(y)]/d[ln(N)]: This quantity would have 
a constant value of a for a simple power-law 
dependence of the form y = KN". Howev- 
er, the observed behavior is far more com- 
plex: There is a maximum of p for N = 60 
double bonds, and p decreases toward 1 
(which corresponds to y N )  for the long- 
est molecules. W e  have estimated y at fre- 
quency o = 0 (see Table 1)  from the above 
data, using a model with a one-photon tran- 
sition at energy hc/Amax above the ground 
state, and with two-photon allowed states 
far from resonance (22, 29): 

~ (o ;o ,o ,o )  = [1 - (A,,,/A)21 

Fig. 2. (A) Values of y(-3w;w,w,w)/N as afunction 
of the number of double bonds N for the model 
polyene oligomers of Fig. 1 as measured by third- 
harmonic generation at 1.9 pm. The solid line is a 
guide for the eye. (6) Plot of d[ln(~)]/d[ln(N)] as a 
function of chain length for the data in (A). 

the measurement. The  saturation behav- 
iors of y(O;O,'O,O) and y ( - 3 o ; o , o , o )  are 
very similar. 

We  contrast the saturation of the in- 
crease of y observed here with the approx- 
imately power-law scaling previously ob- 
served in much shorter molecules (22-24). 
W e  can estimate the corresponding macro- 
scopic cubic susceptibility X ( 3 )  for the long- 
er molecules from our measured value of 
y/N by assuming the same packing density 
(= 3 x 1014 cmp2) and local field factor (= 
10) as for polyacetylene. This gives X ( 3 )  .=; 2 
x lo-'@ esu (0.5 x lo-'' esu after correc- 
tion to zero frequency), which is similar to 
the experimental value in oriented poly- 
acetvlene of (4 i 2) x 10pl@ esu at 1064 ~. 

nm reported by Sinclair et al. (30) after 
[1 - (3A,n,,/~)21y( - 3 w 4 o , o )  taking account of the effects of resonance " 

where A = 1.9 k m  is the wavelength of (which could enhance the latter value by a 

Table 1. Summary of data for model polyene oligomers. N represents the average number of double 
bonds in the sample. Each phenyl ring was counted as 1.3 double bonds; MW represents the average 
molecular weight; Mw/M, is the polydispersity; A,, is the wavelength of the maximum of the absorption 
in TMF solution; y,,, = y(-3w;w,w,w) was measured by third-harmonic generation at 1.9 pm; yo = 
y(0;0,0,0) is estimated from y,,, as described in the text. 

YTHG 
(1 0-34 esu) 

factor of 2 to 3 )  and the fact that Sinclair's 
measurements were made on  oriented sam- 
ples (which gives an enhancement of up to 
a factor of 5). Higher values of X ( 3 )  in 
polyacetylene have been reported at reso- 
nance (3 1 ). The uncertainty in our estimate 
of X ( 3 )  is considerable, and, in view of this, 
we consider that it is in satisfactory agree- 
ment with theoretical calculations of X ( 3 )  = 

2 X lop1' esu at zero frequency (8, 10). 
The shape of the curve in Fig. 2A qual- 

itativelv resembles the   re dictions of sever- 
al theories, but the n u i b e r  of double bonds 
at which the onset of saturation is observed 
( N  .=; 120) is much larger than these theo- 
ries suggest. The form of the curve in Fig. 
2B, with a maximum of p followed by a 
decrease toward 1 for large N,  is qualitative- 
ly similar to the ca1.culations of Mukamel 
and Wang (1 1 ,  12) in their electron-hole 
anharmonic oscillator model and of Spano 
and Soos (13) in Hiickel theory (this be- 
havior mav also arise in other models. but to 
date only ihese investigators have published 
curves corresponding to that in Fig. 2B). 
However, although we observe a maximum 
of p slightly above 2.5 for N .=; 60, and p 
approaches 1 for N - 200, Mukamel and 
Wang (using a Hubbard potential U = 

11.26 eV in a PPP model) calculate a max- 
imum of p for N - 5, and they note that p 
falls t o  1 for N = 21 (1 1 ). A further differ- ~, 

ence is that the maximum value of p in our 
measurements is 2.6, compared with -6 
calculated by Mukamel and Wang. In the 
work of S ~ a n o  and Soos (with bond alter- 
nation 6 = 0.07) saturation is also predicted 
to occur in relatively short chains; the max- 
imum of p is calculated to be at N - 15. 

W e  find that the rate of increase of y 
with N is also slower than that measured 
in previous experiments on  shorter mole- 
cules. For example, in one study a = 3.5 
was measured in polyenic oligomers with 
N in the range 4 to 8 (22), and a similar 
value a = 3.6 was observed for slightly 
longer oligomers, with N in the range 10 
to  16 (24) .  

Current theoretical models do not agree " 

with our results. These theories refer to 
idealized planar, all-trans, isolated- gas- 
phase polyene oligomers. Our molecules 
contain some cis linkages (32). In addition, 
our measurements were made in solution, 
and so there will be some conformational. 
disorder of the molecules. which would re- 
duce the extent of electron delocalization. 
The connection between chain length and - 
conjugation length in chains with disorder 
is at present a challenge to theory (33). The 
saturation occurs for chain lengths consid- 
erably longer than expected in existing the- 
ories, which suggests that the description of 
the electronic properties of long-chain con- 
jugated molecules with conformational dis- 
order requires further theoretical investiga- 
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tion. In addition, the phenyl ring in the 
center of the molecule might also reduce 
the extent of electron delocalization. Al- 
though the implications of such effects for 
the saturation behavior are uncertain, we 
consider that a reduction in the extent of 
electron delocalization would tend to re- 
duce the chain length at which saturation 
occurs and therefore does not provide a 
satisfactory explanation of why we observe 
saturation at considerably greater chain 
lengths than theory predicts. In these long- 
chain polyene oligomers (with terminal and 
central phenyl groups), it is conceivable 
that bond alternation is reduced, thereby 
increasing the chain length at which satu- 
ration occurs. However, we do not see any 
evidence for reduced bond alternation. -in 
the absorption spectra. In addition, the ef- 
fect of the end groups on y is both expected 
and observed to be small in such long mol- 
ecules (34). 
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The Use of Graft Copolymers to 
Bind Immiscible Blends 

Dilip Gersappe, Darrell Irvine, Anna C. Balazs,* Yun Liu, 
Jon Sokolov, Miriam Rafailovich, Steveri Schwarz, 

Dennis G. Peiffer 

Computer simulations and experimental studies were combined to design copolymers 
that enhance the strength of polymer composites. These copolymers contain side chains 
that associate across the boundary between phase-separated regions to form a "mo- 
lecular velcro" that effectively binds the regions together. This behavior significantly 
improves the structural integrity and mechanical properties of the material. Because the 
side chains can be fabricated from a large class of compounds, the technique greatly 
increases the variety of copolymers that can be used in forming high-strength polymer 
blends. 

Polymer alloys or blends provide the advantage 
that the properties of the material can be con- 
trolled by v-wing the type and quantity of poly- 
mers that go into the mixture. In this way, the 
composite can be tailored to exhibit the desired 
optical, electrical, mechanical, or rheological 
properties for a variety of specific applications. 
The actual fabrication of polymer blends, how- 
ever, poses significant challenges. Most polymer 
blends are immiscible, and thus, the compo- 
nents phase separate into distinct, macroscopic 
domains. To enhance the structural integrity 
and mechanical properties of the resulting ma- 
terial, copolymer "compatibilizers" are added to 
the mixture. These chains effectivelv act as hirrh - 
molecular weight surfactants: They localize at 
the interface between the immiscible oolvmers, . ,  , 

lower the interfacial tension, and disperse the 
incompatible polymers into smaller domains. 
Consequently, the degree of adhesion between 
the phase-separated regions and the me- 
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chanical properties of the material are 
sirrnificantlv enhanced. 

"Studies have demonstrated that graft co- 
polymers act as highly effective compatibi- 
lizers (1).  Graft copolymers contain a back- 
bone and side chains ("teeth") that ema- 
nate from the backbonk. We  have coupled 
comouter simulations with exoerimental 
studies to design graft copolymers that act 
as "molecular velcro" (2): The teeth inter- . , 

twine across the polymer-polymer interface 
and effectively bind the two phase-separat- 
ed regions (Fig. 1). As our findings show, 
this behavior dramatically improves the 
mechanical properties of the composite ma- 
terial. Because the teeth are chemically dis- 
tinct from the phase-separated homopoly- 
mers, and may in fact be incompatible with 
the homopolymers, this technique signifi- 
cantly increases the variety of materials that 
can be used as comoatibilizers for mul- 
tiphase and multicomponent materials. 

We first describe the results of the Monte 
Carlo computer simulations and then discuss 
the findings on the comparable experimental 
system. Simulations constitute powerful tools 
in such studies because the model allows the 
chains to self-assemble into the preferred mi- 
crostructure. Consequently, the simulations 
can provide significant information about the 
morphology of the system. In addition, the 
computer graphics allow us to visualize the 
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