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Calcineurin Inhibition of Dynamin I GTPase Activity 
Coupled to Nerve Terminal Depolarization 
Jun-Ping Liu,* Alistair T. R. Sim, Phillip J. Robinson 

Dynamin I is a nerve terminal phosphoprotein with intrinsic guanosine triphosphatase 
(GTPase) activity that is required for endocytosis. Upon depolarization and synaptic 
vesicle recycling, dynamin I undergoes a rapid dephosphorylation. Dynamin I was found 
to be a specific high-affinity substrate for calcineurin in vitro. At low concentrations, 
calcineurin dephosphorylated dynamin I that had been phosphorylated by protein kinase 
C. The dephosphorylation inhibited dynamin I GTPase activity in vitro and after depo- 
larization of nerve terminals. The effect in nerve terminals was prevented by the calcineurin 
inhibitor .cyclosporin A. This suggests that in nerve terminals, calcineurin serves as a 
Ca2+-sensitive switch for depolarization-evoked synaptic vesicle recycling. 

Dynamin  I (previously called dephosphin 
or p96) was discovered as a phosphoprotein 
in nerve terminals (1,  2) and as a microtu- 
bule-binding protein with GTPase activity 
(3). Dynamin I is a family of four neural 
isoforms, dynamin I1 is a family of four 
isoforms expressed in most other tissues (4 ,  
5) ,  and dynamin 111 is an apparently testis- 
specific form (previously called dynamin-2) 
(6,  7). The GTPase activity of dynamin I is 
stimulated in vitro by microtubules (8 ,  9), 
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phospholipids ( 1 O), SH3 domain-contain- 
ing proteins (1 1 ), and protein kinase C-me- 
diated phosphorylation (1 2). Dynamin I is a 
good in vitro substrate of protein kinase C 
(Michaelis constant, K,, of 0.35 pM) (7), 
and in resting nerve terminals, it is phos- 
phorylated by this protein kinase (13). 
However, when synaptic vesicle recycling is 
stimulated by depolarization, dynamin I is 
dephosphorylated (2,  12, 14). Because mu- 
tations of the GTP-binding domain of dy- 
namin I expressed in mammalian cells, or of 
the related dynamin family in the Drosoph- 
ila mutant shibire, are defective in endocy- 
tosis (15-18), dynamin I and its phospho- 
rylation control mechanisms are thus 
placed in the context of nerve terminal 
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from pCEP4 (Inv~trogen), is driven by the CMV 
promoter and appends a nine-amlno acld influen- 
za HA tag at the NH,-terminus of the expressed 
proteln [I. Wilson etal. ,  Cell 37, 767 (1984)l. The 
pCEP4-Lerner was modified to pMCL by introduc- 
tion of convenient restriction sltes, and a 1.5-kb 
Bam HI to H~nd  Ill fragment from pKH-I (encoding 
wild-type MAPKK without the hexahistidine tag) 
was recovered and subcloned into pMCL digested 
with Bam HI and Hlnd Ill. The same approach was 
used to generate constructs encod~ng mutant HA- 
tagged MAPKK. We transfected the 293 cell line 
by electroporation with 15 pg  of pMCL-MAPKK 
plasmid DNA. The efficiency of transfection was 
>80%. For CAT assays, cells were transfected 
with the pMCL-MAPKK plasmid (15 pg) and with 
the reporter plasmid pTE3AS-N (7.5 pg), which 
contains the CAT gene under control of 10 tandem 
repeats of the AP-1 s~te from SV40. Fresh medium 
was added to cells 24 hours after transfect~on. 
Twenty-four hours later, cell extracts were recov- 
ered and assays were done according to guide- 
lines In the CAT Enzyme Assay System kit (Pro- 
mega). 
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endocytosis (1 2) .  Endocytosis is a gener- 
alized intracellular pathway for the recy- 
cling of vesicle membrane from the plas- 
ma membrane, in which recycling vesicles 
are transiently surrounded by a protein 
coat of clathrin and adaptins, then invag- 
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Fig. 1. Regulation of dynamin I GTPase activity 
in nerve terminals. Dynamin I was immunopre- 
clpitated from isolated nerve terminals with spe- 
cific antibodies and was assayed for GTPase 
activity before and after depolarizatlon for 5 s 
with 41 mM Kf In the presence of extracellular 
0.1 mM Ca2+ (blank bar), 1 mM EGTA (striped 
bar), or 1 pM cyclosporin A (filled bar). (A) Dy- 
namin I GTPase activity from the cytosolic frac- 
tion. (B) Dynamin I GTPase activity from the 
peripheral membrane fraction. Results are 
means of two experiments performed in qua- 
druplicate. The asterisks indicate P < 0.01. For 
methods, see (22). 



inated into the cell and finally pinched off 
(19, 20). Synaptic vesicle recycling is a 
specialized neuronal form of receptor-me- 
diated endocytosis with many features in 
common but which uses neural-specific 
forms of proteins such as clathrin and 
dynamin (4, 20). Depolarization initiates 
synaptic vesicle recycling, but the recy- 
cling does not require the continued pres- 
ence of intracellular CaZ+ and i s  complete 
within 1 min  (21 ). The aim of this study 
was to examine the mechanism of depo- 
larization-elicited endocytosis by deter- 
mining the regulation of dynamin I 
GTPase in nerve terminals. 

We immunoprecipitated dynamin I with 
a specific antibody (22) from the cytosol 
and solubilized membrane fractions of iso- 
lated nerve endings (synaptosomes) before 

and after depolarization. Dynamin I immu- 
noprecipitated from resting nerve terminal 
cytosol retained intrinsic GTPase activity 
(Fig. 1A). When the nerve terminals were 
depolarized for 5 s with 41 mM KC1, the 
GTPase activity of the immunoprecipitated 
dynamin I was decreased (Fig. 1A). Depo- 
larization-induced inhibition of dynamin I 
GTPase activity was also observed when 
the synaptosomes were repolarized and de- 
polarized a second time, and it was depen- 
dent on extracellular CaZ+ because the ef- 
fect was abolished in the presence of EGTA 
(Fig. 1A). Dynamin I GTPase activity in 
immunoprecipitates from synaptosomal 

membranes was not altered by depolariza- 
tion (Fig. 1B). This suggests that cytosolic 
dynamin I GTPase activity i s  probably reg- 
ulated by Ca2+ influx. To  determine if cal- 
cineurin, the Ca2+- and calmodulindepen- 
dent phosphatase IIB, might be involved, 
we included the calcineurin inhibitor cyclo- 
sporin A (23) in the incubation of synap- 
tosomes. In the presence of cyclosporin A 
(1  pM), the inhibition of dynamin I 
GTPase activity by depolarization was 
blocked, suggesting that calcineurin medi- 
ates the inhibition of dynamin I GTPase 
activity, presumably by Ca2+-activated de- 
phosphorylation of dynamin I in the nerve 

Fig. 2. Dynamin I dephosphorylation by cal- 
cineurin. (A) Activation of calcineurin dephospho- 
rylation of dynamin I by cations and calmodulin. 
Purified phospho-dynamin I was incubated for 15 
min with calcineurin as well as the different actiia- 
tors indicated, and dephosphorylation was mea- 
sured by autoradiography. The concentrations 
used were as follows: 18 nM calcineurin (CaN); 
200 nM calmodulin (CaM); 200 pM Ca2+; 1, 2, 
and 5 mM Mn2+ in lanes 4,5, and 6, respectively; 
and 1, 2, and 5 mM Mg2+ in lanes 7, 8, and 9, 
respefAvely. Results are representative of two to 
three independent experiments in triplicate. Mo- 
lecular sizes are indicated in kilodakons. (B) Phos- 
phopeptide map of dynamin I after cleavage with 
Staphyloaxcus aureus V8 protease. The two 
phosphopeptides 21 and 19 kD from dynamin I 
are indicated with arrows on the right. Calcineurin 
was stimulated in the presence of Ca2+ and cal- 
modulin plus either Mn2+ (1 mM) or Mg2+ (1 mM). 
Ctrl, control. For methods, see (24). 

PPl l 

Fig. 3. Characterization of dynamin I dephosphorylation by calcineurin. (A) Concentration-depen- 
dent dephosphorylation of dynamin I by calcineurin. Purified phospho-dvnamin I was incubated with 
different concentrations of calcineurin for 15 min, and the dephosphorylation was expressed as 
percentage of total phosphorylation. All conditions included Ca2+ and CaM, with further addition of 
Mg2+ (A), Mn2+ 0, or no addition (0). Results were from one of three similar experiments 
determined in triplicate. The concentrations used were Mg2+, 1 mM; Mn2+, 1 mM; Ca2+, 200 FM; 
and CaM, 200 nM. (B) Time course of calcineurin dephosphorylation of dynamin I. Purified pho~pho- 
dynamin I time periods in the presence of Ca2+, calmodulin, and Mn2+. Results are from ?typical 
single experiment determined in triplicate. (C) Kinetic analysis of dynamin I dephosphorylation by 
calcineurin. Various concentrations of purified phospho-dynamin I were dephosphorylated by cal- 
cineurin (9 nM). Kinetic parameters (K, and V-) were derived from the double reciprocal plot 
(insert). PI, inorganic phosphate. (D) Specificity of dynamin I dephosphorylation. Purified phospho- 
dynamin I was used as a substrate for different protein phosphatases. The concentration of purified 
calcineurin was 9 nM (or 21 units, where 1 unit is equivalent to dephosphorylation of 1 pmol/min of 
PNPP). The amounts of partially purified phosphatase 1 (PP1, crosshatch bar) and phosphatase 2A 
(PP2A, solid bar) used are expressed as relative units. One unit is equivalent to the dephosphoryl- 
ation of 1 pmol/min of 32P-labeled glycogen phosphorylase. The results were from one of two 
experiments determined in triplicate. Ctrl, control. For methods, see (25). 
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terminals. Thus, protein kinase C phos­
phorylation and calcineurin dephosphoryla-
tion may underlie the effects of membrane 
excitation on cytosolic dynamin I GTPase 
activity-

Interactions between dynamin I and cal­
cineurin were further analyzed in vitro (24, 
25) to determine the underlying mecha­
nism. Dynamin I was purified from rat 
brain, stoichiometrically phosphorylated by 
protein kinase C, and repurified to remove 
protein kinase C (24). Calcineurin dephos-
phorylated dynamin I in a Ca2 +- and cal-
modulin-dependent manner (Fig. 2A). De-
phosphorylation was optimal with addition 
of Mn2 + , a characteristic of calcineurin ac­
tivation (26). When calcineurin was fully 
activated, 50% dephosphorylation (ED50) 
was achieved at a calcineurin concentration 
of 5 nM and over 95% dephosphorylation 
at 15 nM (Fig. 3A), suggesting that cal­
cineurin may be a high-affinity dynamin I 
phosphatase. Phosphopeptide mapping with 
V8 protease showed that both the 21- and 
19-kD phosphopeptides were coordinately 
dephosphorylated (Fig. 2B). Thus, both iso-
forms are dephosphorylated by calcineurin, 
because these phosphopeptides derive from 
the COOH-terminal tails of the two dy­
namin I size variants of 96 and 94 kD (12). 
Dephosphorylation of dynamin I occurred 
within 5 s, the shortest time measured with 
this assay, and it was 50% dephosphorylated 
within 1 min (Fig. 3B). Kinetic analysis of 
calcineurin-mediated dephosphorylation by 
double reciprocal plot (Fig. 3C, insert) 
showed a Km of 05 ± 0.01 |ULM and a Vmax 

of 66 ± 1.3 nmol mg_ 1 min - 1 . Thus, dy­
namin I has a moderate velocity of dephos­
phorylation, but a high affinity for cal­
cineurin, three times that of other charac­
terized calcineurin substrates (26-28). 
Therefore, dynamin I may be one of the 
primary targets for calcineurin in the brain. 

To determine the specificity of cal­
cineurin action, we examined potential 
dephosphorylation by other protein phos­
phatases (25). Dynamin I was incubated 

Fig. 4. Calcineurin dephosphorylation inhibits 
phospho-dynamin I GTPase activity. Purified dy­
namin I or phospho-dynamin I GTPase activity 
was measured in the presence or absence of cal­
cineurin under the following conditions: • , phos­
pho-dynamin; • , phospho-dynamin + CaN-
M g 2 + ; • , phospho-dynamin + CaN-Mn 2 + ; and 
O, dynamin. Results were from one of two similar 
experiments determined in quadruplicate. For 
methods, see (29). 

with calcineurin, phosphatase 1 (PP1), or 
phosphatase 2A (PP2A) (Fig. 3D). 
Whereas calcineurin [at concentrations 
equivalent to 21 units (1 unit equals 1 
pmol/min for the substrate PNPP)] almost 
fully dephosphorylated 10 pmol of dy­
namin I, substantially high concentra­
tions of either phosphatase PP1 or PP2A 
(60 or 200 units for the substrate glycogen 
phosphorylase) had little effect. The max­
imal extent of dephosphorylation by PP1 
or PP2A was 30%, indicating the speci­
ficity of calcineurin. This is consistent 
with our previous report that dephospho­
rylation of dynamin I in nerve terminals is 
not sensitive to the low concentrations of 
okadaic acid ( < 1 u,M) that inhibit PP1 
andPP2A (14). 

To reconstitute the inhibition of dy­
namin I GTPase activity observed in the 
intact nerve terminals, we co-incubated 
phosphorylated dynamin I with Ca2 + , 
calmodulin, and calcineurin and deter­
mined GTPase activity (29). Protein kinase 
C phosphorylation stimulated dynamin I 
GTPase activity (12), but in the presence of 
calcineurin the elevated GTPase activity 
was inhibited (Fig. 4)- Thus, calcineurin 
activation mimics the effect of depolariza­
tion on dynamin I in nerve terminals, me­
diating both dephosphorylation and reduc­
tion in dynamin I GTPase activity. This, 
together with the effect of cyclosporin A on 
dynamin I GTPase activity in intact nerve 
terminals, indicates that calcineurin is the 
primary dynamin I phosphatase that con­
trols dynamin I GTPase activity in nerve 
terminals and implicates calcineurin in the 
mechanisms underlying synaptic vesicle re­
cycling. These events may prove to be spe­
cific to neural cells, because non-neuronal 
dynamin II is not a substrate for protein 
kinase C (4) and therefore may not exhibit 
the same Ca2+-dependent regulation dur­
ing endocytosis in non-neuronal cells. 

In resting or recovering nerve terminals, 
dynamin I GTPase activity is elevated by 
phosphorylation and upon stimulation it is 
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reduced. Therefore, we propose that Ca2 + is 
the trigger for synaptic vesicle recycling by 
means of activation of calcineurin and rapid 
dynamin I dephosphorylation. After depo­
larization, the recycling is then indepen­
dent of intracellular Ca2 + and could then 
be terminated by rephosphorylation of dy­
namin I by protein kinase C. In support of 
this, dynamin I phosphorylation after depo­
larization occurred with a similar time 
course to the completion of vesicle recy­
cling (13, 21). The functional consequence 
of calcineurin-mediated dynamin I dephos­
phorylation was an inhibition of its elevat­
ed GTPase activity, which is directly re­
quired for endocytosis (17, 18). Although it 
is not clear exactly how dynamin I GTPase 
activity operates in the regulation of vesicle 
recycling, this study suggests that dynamin I 
phosphorylation by protein kinase C and 
dephosphorylation by calcineurin serve as 
molecular switches to control nerve termi­
nal vesicle recycling. 
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petition period began with the 3 June 1994 issue published, author's name, and a brief statement of 
and ends with the issue of 26 May 1995. justification for nomination. Nominations should be 

submitted to the AAAS-Newcomb Cleveland Prize, 
Reports, Research Articles, and Articles that in- AAAS, Room 924, 1333 H Street, NW, Washington, 

clude original research data, theories, or syntheses DC 20005, and must be received on or before 30 
and are fundamental contributions to basic knowl- June 1995. Final selection will rest with a panel of 
edge or technical achievements of far-reaching con- distinguished scientists appointed by the editor-in- 
sequence are eligible for consideration for the prize. chief of Science. 
The paper must be a first-time publication of the au- The award will be presented at the 1996 AAAS 
thor's own work. Reference to pertinent earlier work annual meeting. In cases of multiple authorship, 
by the author may be included to give perspective. the prize will be divided equally between or among 

Throughout the competition period, readers are the authors. 
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