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tion that  single rate-controlling enzymes 
possess regulatory properties capable of 
supporting stable noneyuilibrium oscrlla- 
tory states under defined conditions (3) .  
O n e  such svsteln is the elvcolvtic oscilla- - ,  

tor, which is prrmarrly controlled by phos- 
phofructokinase (4). T h e  ubiquitous dis- 
tribution of glycolytic enzymes has motr- 
vated proposals that  the oscillator could 
mediate varrous oscillatory physiological 
behaviors, including slow waves of con- 
traction in smooth muscle 15). bursting . , ,  - 
electrical activity in Aplysia neurons (6) ,  
and insulin release from the  B islet cells of 
the pancreas (7). 

Our results describe a metabolic oscilla- 
tor revealed by substrate deprivation that 
drives oscillations in the adenosine triphos- 
phate (ATP)-sensitive potassium current 
and in the amplitude of depolarization- 
evoked increases in intracellular Ca2+ con- 
centration (Ca2+ transients) in ventricular 
myocytes. Examination of the mechanism 
of this phenomenon indicates that the gly- 
colytic oscillator may be the primary 
rhythm generator underlying the observed 
changes in membrane currents and excita- 
tion-contraction coupling. 

Membrane current and fluorescence 
were measured in guinea pig ventricular 
myocytes equilibrated wirh intracellular 
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and extracellular solutions containing phys- 
iological concentrations of ions (8). When - ~, 

external glucose is supplied, such myocytes 
respond to depolarizations with little alter- 
ation of Na+, Ca2+, and Kt  currents for 30 
min or more (9). When fuel substrates were . . 
omitted from the bathing medium, large 
periodic increases in a background mem- 
brane conductance were initiated. In each 
cycle of oscillation, the current developed 
over 30 s, peaked briefly, and resolved with- 
in the next 60 s (Fig. 1A). In the absence of 
external substrate, spontaneous oscillations 
in membrane conductance were observed in 
42 of 96 myocytes (44%), with a slightly 
higher percentage obtained in a subgroup of 
myocytes equilibrated with internal solu- 
tions having less than 5 mM ATP. In myo- 
cytes that did not oscillate spontaneously at 
the onset of the experiment, oscillatory 
membrane currents were often initiated af- 
ter prolonged observation or after perturba- 
tions of intracellular metabolites. Simulta- 
neous measurement of intracellular Ca2+ 
concentration revealed that peak systolic 
Ca2+ (that is, during membrane depolariza- 
tion) was suppressed in phase with the de- 
velopment of the oscillatory current with- 
out a change in diastolic Ca2+ (Fig. 1, A 
and B). This reduction in the am~l i tude  of 
the Ca2+ transient was reversed when the 

background current returned to baseline. 
The peak-to-peak period of spontaneous os- 
cillations for eight different cells averaged 
1.66 + 0.21 min (mean + SD), with the 
predominant pattern observed being 
pseudosinusoidal (1 0). Self-sustaining oscil- 
lations in current and in the amplitude of 
the Ca2+ transient could be observed for 
more than 2 hours. 

Analysis of the current-voltage relation 
for background currents during membrane 
voltage ramps (Fig. 2A) revealed that the 
reversal potential of the background current 
at the peak of an oscillation was the same as 
that during the nadir. The reversal poten- 
tial of the background currents always re- 
mained near the estimated equilibrium po- 
tential for potassium (EK = -86 mV for the 
experimental solutions) and could not be 
explained by alterations in the membrane 
conductance of other cations or that of 
chloride. Because the oscillating K+ current 
showed weak inward rectification at posi- 
tive potentials and was observed only dur- 
ing metabolic stress, ATP-sensitive potassi- 
um channels (IK,ATP) were suspected as me- 
diators of the response. We  tested this pos- 
sibility by applying the ATP-sensitive 
potassium channel blocker glibenclamide to 
a myocyte undergoing spontaneous oscilla- 
tions. Consistent with a mechanism involv- 

Fig. 1. Changes in membrane cur- 
rent and intracellular Ca2+ (Ca2+,) 
transients during metabolic oscilla- 
tions. (A) Upper panel shows mem- 
brane currents recorded when the 
voltage protocol (inset) was repeat- 
ed every 6 s during a single oscilla- 
tory cycle in a myocyte bathed in 
substrate-free medium. Rapidly in- 
activating inward Na+ currents are 
the a r t  downward spikes at the 
onset of the depolarization to -40 
mV. L-type Ca2+ currents are ap- 
parent in the'second depolarization 
to + 10 mV but are obscured by the 
large outward current at the peak of 
the oscillation. The noisier traces in 
the lower panels are Ca2+ tran- 
sients evoked y the membrane de- 
polarizations. Dashed lines indicate 
that six records of the sequence in 
both panels have been omitted. (B) 3 
(Upper panel) The time course of 5 46 
changes in membrane current ( I ) ,  
and (lower panel) systolic Ca2+ (the 
peak fluorescence during a depo- 
larizing pulse) and diastolic Ca2+ 
(fluorescence at the holding poten- 
t~al) during 11 oscillations. The up- t- 3 
per panel is a sequential plot of cur- 8 
rents at the holding potential (-45 
mV) and at + 10 mV. Current values 
were taken just before and at the 0 5 10 15 9.0 9.5 10.0 

end of a depolarizing pulse to + 10 Time (min) 

mV (repeated every 6 s). The lower panel displays the corresponding values of diastolic Ca2+ and systolic 
Ca2+. An expanded plot of a single oscillation is shown to the right of each data set (Ca2+ values are 
uncalibrated fluorescence units). 

ing IK,ATP, glibenclamide abruptly halted 
the oscillations (Fig. 2B) (1 1). Changes in 
membrane potential or in resting intracel- 
lular Ca2+ concentration were not required 
to support the oscillations in IK,ATP. In a 
myocyte undergoing spontaneous oscilla- 
tions of membrane current and Ca2+ tran- 
sient amplitude during depolarizing steps 
(Fig. 2C), the membrane potential was held 
constant at -80 mV for 10 min. Elimina- 
tion of voltage-activated currents abolished 
the intracellular Ca2+ transient without af- 
fecting the oscillations in holding current 
(Fig. 2C). Thus, the oscillatory phenome- 
non neither requires voltage changes nor 
does it rely on feedback control by intracel- 
lular Ca2+ (1,  2 ,  12, 13). 

Stable oscillations in the flux of sub- 
strates through glycolysis have been ob- 
served (4, 14, 15). In intact yeast, glycolyt- 
ic oscillations can be recorded by monitor- 
ing the concentration of reduced nicotin- 
amide adenine dinucleotides (NADs) [pri- 
marily the' reduced form of NAD+ 
(NADH)] with fluorescence spectroscopy 
(16). We  found that the oscillations in 
IK,ATP were correlated with transient de- 
creases in NADH (Fig. 3A). Analysis of the 
first derivative of the time course of oscil- 
lations in current and NADH indicated 
that the decrease in NADH consistentlv 
preceded the increase in membrane cur- 
rents (Fig. 3B), suggesting that a change in 
the rate of energy metabolism initiated the 
change in membrane conductance. 

Further support for this idea was ob- 
tained by altering the rates of glycolysis or 
oxidative phosphorylation with exogenous 
substrates or metabolic inhibitors. Provision 
of glucose to cardiomyocytes displaying the 
oscillatory response interrupted the cycle of 
oscillations in the majority of cases (Fig. 
4A): in some cells, only a strong amplitude 
damoing effect was observed on exDosure to 

A - 
glucose, with little effect on the frequency 
(Fig. 4B). Although the oscillatory response 
is closely associated with glycolytic flux, 
oscillations of mitochondria1 function [re- 
oorted in isolated mitochondria (1 7)l could , . 
hot be excluded as a potential source of 
oscillation. However, two oieces of evi- 
dence argue against mitochondria as the 
orimarv site of the oscillator. 
A 

~irs;, a high concentration of glutamate 
was the main anion in the intracellular solu- 
tion in most experiments, thus providing a 
substrate for oxidative metabolism by means 
of conversion to a-ketoglutarate by glutamate 
dehydrogenase (18). Substitution of the glu- 
tamate with chloride did not prevent the 
occurrence of spontaneous current oscillation, 
indicating that the kev factor was not oxida- - 
tive substrate availability. 

Second, we also inhibited glycolysis and 
oxidative phosphorylation in a cell exhib- 
iting spontaneous oscillations (Fig. 5A). In- 
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Fig. 2. Identification of the 
background current as A 
I K  ATP. (A) Voltaqe ramps I I 

B 
0.2 rnM Glibenclarnide 

, I 

~, 

oscillations in current (upper 
-100-80 -60 -40 -20 0 20 40 60 80 100 

panel) by the ATP-sensitive Voltaae fmw Time fmin) 

from +lob m~to-- l10 &V 3 - 

were repeated every 4 s dur- 
ing membrane current oscil- 2 - 

lations. Selected records -Nadir 

show the current-voltage re- 1 - 

lation between the oscilla- 
tions (solid line) and at the o 
peak of the oscillating back- - 
ground current (dotted line). 
The reversal potential was 

- .  . 
K t  channel blocker aliben- P+ 

-70 mV and remained un- 2 

changed during the oscilla- 
tions. iB) lnterru~tion of the -3 

clamide. The Ca2+ transient 3 - - -40 mV 
amplitude (lower panel) is -80 mV 
the difference between the 
systolic and diastolic fluo- 
rescence values, (C) Spon- = O} 

- 

- 

taneous oscillations in mem- 
brane current in response to 
a voltage protocol like that in 
Fig. 1A (upper panel) and in 
the absence of depolarizing - 

5 0  2- 
pulses (denoted by the in- 
terruption in -40-mV plot). 
Ca2+ transients ceased 
when the depolarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
were suspended (lower pan- 3 I 

el). The solid line is the differ- 5 10 15 20 25 
ence between the fluores- Time (min) 
cence maximum during de- 
polarization and the fluorescence just before depolarization (Ca2+ transient amplitude), whereas the dotted 
line is the fluorescence difference calculated from similar time points in the absence of depolarizing pulses 
(-80-mV holding potential). 

0.6 

hibition of glvcolvsis with the glucose ana- vent activation of ATP-sensitive K t  chan- 

- 

- ,  , - 
log 2-deoxyglucose interrupted oscillations, nels. The  same myocyte was then exposed 
although there was still sufficient A T P  [ei- to the mitochondria1 uncoupler 2,4-dinitro- 
ther from the pipette solution or the oxida- phenol. This resulted in an increase in di- 
tive metabolism of glutamate (19)] to pre- astolic Ca2+ and suppression of the Ca2+ 

-10 
V 

n 78 79 80 

Time (min) 

Time (min) 

Fig. 3. Correlation between I,,,, oscillations and NADH fluorescence. (A) NADH fluorescence oscilia- 
tions (lower panel; uncalibrated fluorescence units) corresponding to oscillations in membrane current 
(upper panel; current at -40 mV). (8) Phase shift between the first derivative plots of NADH (dashed line; 
scaled to match the derivative of current) and membrane current (solid line). 
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B 
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Fig. 4. Effect of extracellular glucose on oscilla- 
tions in I,,,,, and Ca2+ transient amplitude; (A) 10 
mM glucose; (B) effect of 1 mM glucose on mem- 
brane current. 

transient that was followed shortly thereaf- 
ter by the development of a large, sustained 
outward current, reflecting the activation of 

u 

IK,ATP in response to  severe ATP depletion 
(Fig. 5A). Restoration of both glycolytic 
and oxidative metabolism by washing out 
dinitrophenol in the presence of glucose 
rapidly reversed the effects of dinitrophenol. 
A series of eight damped oscillations were 
then observed after a short delay. The oc- 
currence of oscillations in I,,,, and exci- 
tation-contraction coupling during recov- 
ery from severe metabolic inhibition indi- 
cates the potential importance of this phe- 
nomenon during the reperfusion of 
ischemic cardiac tissues, when the risk of 
arrhythmias is high (20). 

Our results indicate that, over a crucial 
range of glycolytic rates, a n  oscillatory pat- 
tern can be sustained-a decrease in flux 
below or an increase above that range push- 
es the system out of the oscillatory domain. 
This interpretation agrees with models of 
the glycolytic oscillator (21 ), in particular, 
the critical dependence of glycolytic oscil- 
lations on  substrate influx rate (22). Al- 
though resistant to deviation from the 
mean autonomous oscillatory frequency 
over a range of periodic substrate influx 
rates, entrainment of the glycolytic oscilla- 
tor to the input frequency as well as chaotic 
behavior occurs at  specific input frequencies 
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ic inhibition (10 mM 2-de- I 

oxyglucose), uncoupling mi- - +10 mV 
tochondrial energy produc- 
tion [0.2 mM dinitrophenol 
(DNP)] and recovery from 
inhibition on oscillations in 

Fig. 5. Influence of metabol- A 

current (upper panel) and 
systolic Ca2+, (lower panel). 
The combined effects of ex- 
ternal and internal sub- 
strates and inhibitors on ox- 
idative phosphorylation (OP) 
and glycolysis (G) are indi- 
cated above. (B) Flash pho- 

. . .  . Diastolic Ca2+ I 

I 

ACTIVE 
glutamate 

ACTIVE 
glucose 

ic modulators on oscillations op ACTIVE 
glutamate 

of I,,,, and Ca2+ tran- ACTIVE INHIBITED 

tolysis of caged ADP in a cell I I I , I I 

that was not ~reviouslv 0s- 0 10 20 30 40 50 

INHIBITED 
DNP 

zero 

clllatlng. lnte'rnal sofutlon 
contained 0.2 mM ATP and 
1 m M  caged ADP. 

(23). In cardiac cells, which normally rely on 
oxidative metabolism, another type of en- 
trainment must be considered. The cyclical 
changes in adenine nucleotides, NADH, and 
pymvate generated in bursts by glycolysis may 
serve to entrain mitochondria1 function to 
the cytoplasmic oscillator, thus amplifying the 
effect. Feedback on the glycolytic oscillator by 
oxidative metabolism (24) may also modulate 
the oscillatory response. 

sients, (A) Effects of glycoly- 

Time (min) 
I I I I I 

G glucose I 2-deoxyglucose 

Fig. 6. Effects of metabolic oscillations on electrl- 
cal excitability. Upper panel, the action potential 
duration (90% repolarization time) for a series of 
action potentials evoked by brief current injections 
(at 6-s intervals) in a current-clamped cardiomyo- 
cyte. Lower panel, selected action potentials re- 
corded at the time points indicated by the num- 
bers on the upper panel. The brief depolarization 
in 3 is the stimulus artifact. Em is the cell mem- 
brane potential. 

glucose 

Time (min) 

B 
10 r n I 

I 
0 5 10 15 20 25 

Time (min) 

Oscillations in the concentrations of gly- 
colytic intermediates have been measured in 
cell-free extracts of skeletal muscle (25), heart 
(15), yeast (26), and blowfly thorax (14). In 
all of these systems, phosphofmctokinase 
(PFK) has been identified as the major con- 
trol point for maintaining stable nonequilib- 
rium oscillations in glycolysis. The activity of 
PFK is regulated by the positive allosteric 
effectors adenosine monophosphate (AMP), 
adenosine diphosphate (ADP), inorganic 
phosphate (P,), and the negative effectors 
ATP and citrate. Allosteric modulators of 
PFK have been shown to alter the frequency 
and amplitude of the oscillations, often in a 
phase-dependent manner (27). We tested 
whether the observed oscillations in mem- 
brane current responded to interventions that 
alter the activity of the glycolytic oscillator. If 
changes in the ATPIADP ratio trigger oscil- 
lations, we reasoned that a rapid increase in 
cytosolic ADP might initiate the response. 
This prediction was borne out by experiments 
in which the concentration of cytosolic ADP 
was rapidly increased by flash photolysis of 
intracellular caged ADP. In a cell that was 
not oscillating, ADP release immediately in- 
duced a series of oscillations of steadily in- 
creasing amplitude (Fig. 5B) (28). 

The large oscillations of membrane cur- 
rent measured under voltage clamp condi- 
tions implied that electrical excitability 
would be altered cyclically. This prediction 
was tested by recording action potentials in 
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a cell that showed spontaneous oscillations 
in (Fig. 6). Whereas the resting 
membrane potential (close to E,) was min- 
imally influenced by the oscillatory increas- 
es in background potassium conductance, 
cyclical changes in the repolarization phase 
of the action potential were observed, and 
periods of inexcitability paralleled the time 
course of current oscillations. 

Our results indicate that oscillations of 
energy metabolism are capable of modulating 
cardiac excitability and intracellular Ca2+ ho- 
meostasis. In mammalian cells, the strongest 
evidence of a physiological consequence of 
primary metabolic oscillations has been in the 
process of excitation-secretion coupling in 
pancreatic cells, where the glycolytic oscilla- 
tor has been proposed to influence the burst- 
ing pattern of membrane depolarizations me- 
diating insulin release (7). We have found 
that metabolic oscillations often occur in 
myocardial cells subjected to reversible 
metabolic stress, induced after substrate de- 
privation or on recovery from metabolic 
inhibition by chemical agents. Interruption 
of coronary flow produces comparable met- 
abolic effects in the intact heart during an 
ischemic episode. Temporal alterations in 
the shape and duration of the cardiac action 
potential in individual cells or regions of 
the myocardium would be expected to 
greatly increase the susceptibility to fatal 
ventricular arrhythmias (20). The oscillato- 
ry phenomenon may therefore represent a 
cellular mechanism contributing to the 
contractile and electrical dysfunctions asso- 
ciated with myocardial ischemia. 
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Constitutively Active MAP Kinase Kinase 
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Mitogen-activated protein (MAP) kinase kinase (MAPKK) activates MAP kinase in a signal 
transduction pathway that mediates cellular responses to growth and differentiation 
factors. Oncogenes such as ras, src, raf, and mos have been proposed to transform cells 
by prolonging the activated state of MAPKK and of components downstream in the 
signaling pathway. To test this hypothesis, constitutively active MAPKK mutants were 
designed that had basal activities up to 400 times greater than that of the unphospho- 
rylated wild-type kinase. Expression of these mutants in mammalian cells activated 
AP-I-regulated transcription. The cells formed transformed foci, grew efficiently in soft 
agar, and were highly tumorigenic in nude mice. These findings indicate that constitutive 
activation of MAPKK is sufficient to promote cell transformation. 

C e l l  transformation often results from con- 
stitutive activation of components in sig- 
naling pathways that control cell prolifera- 
tion and differentiation. These pathways are 
initiated from various cell surface receptors, 
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and many converge on  the MAP kinase 
cascade, a module consisting of MAPKK 
(also known as MAPK or ERK kinase, or as 
MEK), mitogen-activated protein kinase 
(MAPK, also known as extracellular signal- 
regulated kinase or ERK), and pp90 ribo- 
somal protein S6 kinase (pp9Pk) .  These 
kinases form three successive tiers of a cas- 
cade in which MAPKK phosphorylates and 
activates MAPK, and MAPK phosphoryl- 
ates and activates pp90r" (1,  2). 

Cellular forms of several viral oncogenes 
are found as signaling components upstream 
and downstream of the MAP kinase cas- 
cade, which suggests that the pathway me- 
diates cell transformation. Proto-oncogene - 
products upstream of the cascade include 
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