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Some of the recently developed fast summation methods that have arisen in scientific 
computing are described. These methods require an amount of work proportional to N 
or N log N to evaluate all pairwise interactions in an ensemble of N particles. Traditional 
methods, by contrast, require an amount of work proportional to N2. As a result, large- 
scale simulations can be carried out using only modest computer resources. In combi- 
nation with supercomputers, it is possible to address questions that were previously out 
of reach. Problems from diffusion, gravitation, and wave propagation are considered. 

M a n y  problems in scientific computing re- 
quire the calculation of all pairwise interac- 
tions in large ensembles of particles. A clas- 
sical example is the N-body problem of 
gravitation. Given a configuration of N 
point masses m, located at  the points x, in 
three-dimensional space, the gravitational 
field experienced by any one of them is 
obtained from Newton's law 

N 

where c is the speed of light. 
A rather different kind of interaction 

arises in problems of heat conduction or 
diffusion. Suppose that the temperature pro- 
file in space is given at  time t = 0 by the 
function W(x). Then, in a homogeneous 
isotropic medium with a diffusion constant . . 

xJ - XI of unity ( 3 ) ,  the temperature at time t > 0 
E(xj) = - E m ,  -- 

i =  1 Ix ,  - xiI3 ( I )  is given by 
' 2 1  

where /x, - xjl denotes the Euclidean dis- u(,) = 
1 

tance between the points x, and x,. The 
/ e x y 2 1 4 t  W ( Y ) ~ Y  

same equation, of course, governs the elec- (4) 
trostatic interaction of charged particles ac- A discrete analog of this is the sum 
cording to Coulomb's law, which plays a 
fundamental role in a host of physical and 
chemical processes. The  main difference is 
that mass is always of one sign, whereas 
charge can be positive or negative. In many 
situations, more complicated interactions 
are needed to describe the governing forces. 
In molecular dynamics and protein folding 
calculations, for example, forces acting on  
each atom'may include factors such as bond 
vibration, structural deformation, and van 
der Waals attraction and repulsion (1 ). 
Nevertheless, the dominant force acting at 
significant distances from the atomic center 
is the Coulomb force. 

Sums such as Eq. 1 also arise in contin- 
uum physics, in  the approximation of the 
field attributable to  continuous distribu- 
tions of mass or charge, as 

If we want to  evaluate the temperature field 
U at  each of the N locations x,, we have a 
kind of N-body problem. As alfinal exam- 
ple, consider the acoustic field generated by 
a collection of pulsating sources of strength 
Wi. The (complex-valued) pressure is then 
given by a sum of the form 

where k is the ratio of the frequency of the 
oscillation to the sound speed in the medi- 
um. The intensitv of the sound wave is 

X - Y  proportional to  /+I2. 
3 dy (2) The scientific importance of such prob- 

lems is clear. Unfortunately, our theoretical 
A similar integral arises in magnetostatics, understanding of the detailed structure of 
in the expression of the magnetic induction interacting particle systems has been rather 
B attributable to a steady-state current den- limited. With the advent of high-speed 
sity J. This is the Biot-Savart law ( 2 )  computers, however, we have the ability to 

simulate particle systems and study their 
behavior in detail. The  most expensiGe part 
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USA. force at each source position, which re- 

quires an amount of work proportional to 
N2, where N is the number of particles. This 
growth in cost has been a major limitation 
on  the size of the systems that can be in- 
vestigated, even on  modem supercomput- 
ers. Many problems of practical interest re- 
quire millions of particles and have been 
well beyond reach. However, recently de- 
veloped methods based o n  a combination of 
ideas from mathematical physics and com- 
puter science have substantially reduced the 
amount of work required. 

Fast Summation 

Each of the preceding examples involves 
the evaluation of an integral of the form 

or a sum of the form 
N 

Straightforward computation of Eqs. 1, 5, 6, 
or, more generally, 8 is referred to  as direct 
summation. Algorithms that reduce the 
cost of evaluating these sums at each of N " 

target locations from O(N2)  operations to, 
say, O(N3l2), O ( N  log N ) ,  or O(N)  will be 
referred to as fast summation (4) .  

T h e  first breakthrough in this field 
came about 20 years ago with the devel- 
opment of particle-mesh methods, which 
allowed simulations of gravitational and 
Coulombic systems involving orders of 
magnitude more particles than  previously 
possible. These methods are discussed in 
great detail bv Hocknev and Eastwood 
?5 ). Recent i'mprovem&ts have been 
made by Anderson ( 6 ) ,  Almgren, Buttke, 
and Colella ( 7 ) ,  and Couchman (8) .  
Other  useful methods include the multi- 
level approximation schemes of Brandt 
and Lubrecht (9, 1 0 )  and the "waveletn- 
based scheme of Beylkin, Coifman, and 
Rokhlin (I  1 ). I will limit this discussion, 
however. to  a ~resen ta t ion  of the ideas 
underlying yet another approach, based 
o n  m u l t i ~ o l e  ex~ans ions .  which was de- 
veloped independently i n  the  astrophysics 
(12, 1 3 ) ,  fluid dynamics (14) ,  number 
theory (15 ), and potential theory (16,  
1 7 )  communities. 

Beginning with a simple although phys- 
ically uninteresting example, consider the 
calculation of 

for j = 1, . . . , N, where the points in the 
sets {x,} and {y,} lie on the real line. Direct 
summation then requires O ( N 2 )  operations. 
O n  the other hand, we know that 
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Substitution into Eq. 9 yields 

where 
N 

Precomputation of the moments {Ak} re- 
quires only O(N) work, as does the subse- 
quent calculation of U at each of the N 
target points with Eq. 11. It is easy to 
generalize this observation to summations 
such as Eq. 8 where the kernel of the inter- 
action K(x, y) can be expressed as a finite 
series 

P 

K(~,Y) = ~ + L ( X ) * ~ ( Y )  (12) 
k= 1 

A fast algorithm is obtained by the follow- 
ing two-step procedure. First, compute the 
moments A, defined by 

N 

Ak = cwi$k(yi) 
i= 1 

Second, evaluate U(x) at each target posi- 
tion with 

The amount of work required is O(Np) 
rather than O(V) .  In mathematics, a ker- 
nel K(x, y) that can be expressed as a finite 
sum as in Eq. 12 is known as a degenerate 
kernel. Although the kernels of interest in 
physical applications are generally not of 
this type, the degenerate case serves as a 
useful model. Note that, no matter what the 
source distribution looks like, U(x) is noth- 
ing more than a linear combination of the 
functions {+l(x), . . . , +p(x)}. Thus, there 
is a tremendous loss of information in the 
transformation from the data {yi, Wi} to the 
target function U. The theme of encapsu- 
lating information in terms of moments in 
order to reduce computational cost recurs 
throughout this paper. 

The fa7 field. One of the reasons for the 
specific mention of the three summation 
problems (Eqs. 1, 5, and 6) is that each is 
representative of a broader class of interac- 
tions that influence the kind of fast algo- 
rithm that is appropriate. The difference in 
behavior between the three is demonstrated 
graphically in Fig. 1. Starting with a collec- 
tion of points placed at random inside a 
unit disk in the xy plane (Fig. lA), Fig. 1B 
shows the temperature field U(x) in the xy 
plane for t = 0.1, assuming that at each 
point is a heat source assigned a random 
strength in the range [-0.5, 0.51. It is ob- 

viously a globally smooth function. Assum- 
ing now that at each point is a randomly 
assigned mass in the range [0, 11, Fig. 1C 
shows the gravitational potential 

induced in the xy plane, but only at a 
distance at least one disk diameter away 
from the center of the source distribution. 
Note that the gravitational field (Eq. 1) is 
just the gradient of this potential function. 
If we were to plot the potential in the 
immediate vicinity of the sources, the po- 
tential surface would look enormously more 
complicated. The far field, however, is 
smooth. Finally, Fig. 1D shows the real part 
of the complex-valued pressure field in- 
duced by acoustic sources of random 
strength with frequency k = 5. Despite the 
fact that we have stepped away from the 
sources, the far field has a noticeable struc- 
ture on the scale of the wavelength (Ilk). 

There is a distinct fast algorithm associ- 
ated with each of these cases. We will con- 
sider them in order of mathematical com- 
plexity. 

Smooth Interactions 

Given a set of points xi = (xi, yi, zi) and a 
set of source strengths Wi, the function 

Fig. 1. We consider three different functions U(x) 
of the form described by Eq. 8. (A) The source 
distribution {q} for each case. The unit sphere 
endosing the sources is referred to as the source 
sphere. (B) When the interaction is governed by a 
diision process, the function U(x), given by Eq. 5 
with t = 0.1, is globally smooth. (C) When the 
interaction is gravitational, the function U(x) is 
smooth in the far field. We plot the gravitational 
potential induced by the swrces, but only at a 
sufficient distance from the source sphere, whose 
boundary is raised slightly for identification. (D) 
When the interaction is that of an acoustic field, 
the function U(x) is highly structured even at a 
distance from the sources. The spatial scale of the 
oscillation is determined by the parameter k in Eq. 
6. Here, k = 5. 

is referred to as the (discrete) Gauss trans- 
form (1 8 ). The reason that the temperature 
function in Fig. 1B looks so smooth is that 
U is infinitely differentiable in each coordi- 
nate direction for t > 0. Furthermore, the 
derivatives are rapidly decaying. A more 
precise statement requires the introduction 
of some notation. In particular, we will use 
the Hermite functions hn(x), defined by 

Suppose now that a source xi is located 
in a box with center c = (cl, c2, c,) and side 
length d. Then the heat kernel 

e-lx-xrl'/4t 

can be expressed as a Hermite series 

where 

( Y; ) nz ( z i i )  n3 

and, for x = (x, y, 4) (1 8 )  

One can also derive a precise estimate of 
the error that results from truncating the 
series in Eq. 15 after p terms 

The expansion of Eq. 15 together with its 
error bound (Eq. 16) is the only analytical 
tool needed to construct a fast Gauss trans- 
form. Observe that the heat kernel is verv 
nearly degenerate; that is, one can easily 
choose p so that the heat kernel is approx- 
imated by a finite series with any desired 
precision. The case p = 4 already causes the 
error to be less than 0.01%. It remains only 
to organize the computation so that the 
finite series can be used effectivelv. 

For simplicity, let us assume that the 
sources and targets for the discrere Gauss 
transform (Eq. 14) lie in a cube B,, of unit 
volume, and let us begin by subdividing B, 
uniformly into smaller boxes of side length 
d (if t r 1, B, needs no further refine- 
ment). Choose p sficiently large that the 
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heat kernel is approximated to the desired 
precision. For each small box B with center 
c, compute the moments 

for nl,n2,n,lp. Because each source con- 
tributes to exactly one expansion, the 
amount of work required to form the mo- 
ments for all nonempty boxes is proportion- 
al to Np3, Consider now a target point x 
that lies, say, in box C. Because the heat 
kernel decays exponentially fast in  space, 
we need only consider the influence of the 
near neighbors in our box decomposition 
of Bo. Indeed, ignoring all but the nearest 
(2n + 1 ) ;  boxes, we incur a n  error of the 
order e 14. For n  = 6, this is approxi- 
mately lop4. The  influence of the sources 
contained in each of these nearby boxes can 
be obtained by evaluating the expression 

where {A,, , } are the moments precom- 
puted for box. T h e  amount of work 
required is of the order (2n + 1 ) 3 p 3  for 
each target, which is a constant. T h e  total 
amount of work, therefore, is proportional 
to  N + M, where N is the number of 
sources and M is the number of targets. 
For a more complex but more efficient 
version of the method. we refer the reader 
to  the original paper by Greengard and 
Strain (18). For 100,000 sources and tar- 
gets in  two space dimensions, the algo- 
rithm is about three orders of magnitude 
faster than direct summation. 

Let us next consider two extreme re- 
gimes. First, suppose that t = T h e n  
the effect of each heat source is vanish- 
ingly small beyond a distance of about 
l o p 5 .  T h e  question of fast computation of 
the sum Eq. 14 becomes substantially one 
of sorting and finding near neighbors. 
Second, suppose that t = 1 .  T h e n  all 
sources have nonnegligible interactions, 
but only one box is constructed, one set of 
moments is computed, and one expansion 
is evaluated for each target. As time 
marches forward, there is less and less 
information content in  the temperature 
field U ( x ) .  This is to  be expected from a 
diffusion process. 

Tree Codes 

T h e  evaluation of gravitational or Cou- 
lombic interactions requires a different set 
of tools for organization of the computa- 
tion. T h e  force is long-ranged and not 
globally smooth. Working in the astro- 
physics community, Appel ( 1 2 ) ,  Barnes 
and Hut  ( 1  3 ), and others developed what 
have come to be known as "tree codes" to  

overcome the computational obstacle pre- 
sented by the N-body problem. They are 
based o n  the observation that  although 
the gravitational field may have a com- 
plex local structure, the far field is 
smooth. In  a tree code, a cluster of parti- 
cles is replaced by some simpler represen- 
tation, which is used to comDute the in- 
fluence of the cluster a t  sufficiently great 
distances. Although there is generally 
some sacrifice in accuracy, the amount of 
time required to  compute all interactions 
is proportional to  N log N rather than N2 
(19). . . 

Before discussing the organizational 
aspects of a tree code, let me make a precise 
statement about the approximation of the 
far field. I will consider the potential energy 
function (Eq. 13) rather than the gravita- 
tional field (Eq. 1 )  because it is slightly less 
cumbersome to deal with. I again begin 
with some notation: 

Let (r, 0, 4 )  be the spherical coordinates 
of a point with Cartesian coordinates (x, ,  
x,, x,). That  is 

The potential energy can be expanded in 
terms of special functions known as spher- 
ical harmonics, which are characterized as 
(20 

For m > 0  

and 

where 

AT = 
(- 

V ' ( n  - m)!(n + m)! 
(20)  

Suppose now that a collection of k 
source is contained inside a sphere of radius 
a. Let m, denote the strength of the ith 
source, and let Qi = ( p , ,  a,, PI) denote its 
position in spherical coordinates. Then for 
any x = (r, 8, 4 )  with r > a, the potential 
+(x)  is given by its multipole expansion (2, 
20 ) 

where 
k 

M::' = ~ m , p : ' ~ , - " ' ( a , ,  Pi) (22)  
i =  1 

Furthermore, for any p 2 1 ,  

where 
k 

From the error bound Eq. 23, it is clear that 
there are two ways to improve accuracy. 
One is to increase p ,  referred to as the 
degree of the expansion, until some desired 
degree of precision is achieved. The  other is 
to fix b and insist that the ratio alr be 
sufficieAtly small. Observe that we 'have 
achieved a tremendous amount of data 
compression in the multipole expansion. A t  
a distance 2a from the center of the sphere, 
setting p = 20 provides six digits of accu- 
racy in the evaluation of the potential. 

The nonadaptiwe scheme. If the source 
distribution is essentially uniform in a cube, 
a fairly simple nonadaptive algorithm can 
be constructed. W e  need to introduce a 
hierarchv of boxes that refine the domain 
into smaller and smaller regions. Level 0  
will refer to the entire box. and level 1 + 1 
is obtained by subdividing each box at  level 
1 into eight equal parts, which are consid- 
ered its children. The  number of distinct 
boxes at  level 1 is then 8'. Within this data 
structure, boxes at  the same level of refine- 
ment that share a boundary point are said to 
be near neighbors. Boxes that are at the 
same refinement level but are not near 
neighbors are said to be well separated. 
Finally, with each box i is associated an 
interaction list consistine of the children of 

u 

the near neighbors of i's parent that are well 
separated from i itself (Fig. 2). 

The  idea of the algorithm is to use the 
box hierarchy to cluster particles at finer 
and finer spatial scales and to compute in- 
teractions between distant clusters bv 
means of multipole expansions. A t  levels 0  
and 1 ,  there are no pairs of boxes that are 
well separated. A t  level 2, on  the other 
hand, 64 boxes have been created, and 
there are a number of well-separated pairs. 
Suppose now that, for each box i at level 2, 
we create the multipole expansion about 
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the box center induced by the contained 
sources. We can then use these multiple 
expansions to compute the interactions be- 
tween the particles in all well-separated 
pairs of boxes. After all such well-separated 
interactions have been accounted for, it 
remains onlv to comDute the interactions 
between particles contained in each level 2 
box with those contained in the box's near 
neighbors. The algorithm does this recur- 
sively. Consider, for example, a level 3 box, 
and let us seek to determine which other 
boxes at that level should be interacted 
with by means of multiple expansions. 
Those boxes outside the region of the par- 
ent's near neighbors are already accounted 
for (at level 2), and interactions with near 
neighbors cannot accurately be computed 
by means of an expansion. The remaining 
boxes correspond exactly to the interaction 
list defined above. The nature of the recur- 
sion is now clear. For each box at each finer 
level, a multiple expansion of degree p is 
formed, expressing the far field induced by 
the sources it contains. This ex~ansion is 
then evaluated for each particlein the re- 
gion covered by its interaction list. We halt 
the recursive process after log N levels of 
refinement. 

The amount of work done at each level is 
of the order O(N). To see this, note first that 
approximately p2N operations are needed to 
create all expansions, because each particle 
contributes to exactly expansion d- 
cients. Second, from the point of view of a 
single particle, there are at most 189 boxes 
(the maximum size of the interaction list) 
whose ex~ansions are evaluated. so 189b2N 
operati- are needed for all evhtions: 

At the finest level, we have created 

Fig. 2 The near neighbors and interaction list of a 
box in two soace dimensions. The thick lines cor- 
respond to ievel 2, and thin lines correspond to 
level 3. For the level 3 box marked bv x, the near- 
est neighbors are indicated by the letter n, and the 
interaction list by the letter i. Interactions between 
sources in the dashed region and those in the box 
x have already been computed at levei 2. 

8'@ = N boxes, and it remains only to 
compute interactions between nearest 
neighbors. Because we have assumed that 
the distribution is homogeneous, there is, 
on the average, one particle per box, so that 
this last step requires about 27N operations. 
The dominant cost is the formation and 
evaluation of expansions at each level, 
which is proportional to N log N. In the 
Barnes-Hut algorithm, p is chosen to be 1, 
2, or 3. If greater precision is desired, the 
distance from a multiple expansion center 
to an evaluation point must be increased in 
accordance with the error bound Eq. 23. 
This requires a change in the definitions of 
interaction list and near neighbor (21 ). In 
the algorithm described above, however, 
one chooses p to yield any prescribed accu- 
racy, again in accordance with Eq. 23. Such 
a scheme was proposed (in two space di- 
mensions) by Van Dommelen and Runden- 
steiner (1 4 ). 

The duptive &orithm.When the distri- 
bution of is nonuniform, as in most 

astrophysical problems, it is clear that a 
somewhat different strategy must be used. 
During the refinement process, each box is 
examined to determine whether it actually 
contains anv ~articles. If so. it is subdivided 
further. If G t ,  it is pruneh from the tree 
structure and ienored at subseauent levels. 
The cost of t h i  adaptive algori&m is more 
difficult to state precisely because it depends 
on the total number of refinement levels, 
which is not determined a priori. In most 
cases of practical interest, this turns out to 
be proportional to log N. For example, if 
the interparticle spacing collapses as N-', 
where s is independent of N, then s log N 
levels are needed. It is. therefore. auite rea- 

p .  

sonable to refer to the adaptive algorithm as 
also being of the order N log N. 

The Fast Multipole Method 

The fast multiple method (FMM) (1 6, 17, 
22-25) can be viewed as a tree code, but 
one which makes use of several further an- 

Fig. 3. A snapshot from a simulation of the formation of a galaxy in the early universe. The upper left panel 
is taken from a simulation that onlv includes aravitational interactions. whereas the other ~anels include 
the effects of gas dynamics. partides d o r s  cyan only interact through gravity. particles that interact 
hydrodynamically as well as gravitationally are colored according to their density, with density increasing 
from black to blue to red to white. The upper left panel is 640 kpc across. Successive magnifications are 
shown clockwise, with the lower left panei measuring 10 kpc across. Such galaxies are believed to 
provide sites for the most distant quasars. The simulation is by Katz eta/. (38). 
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alytical observations. The main observation 
is that away from a collection of sources, the 
potential field can be expressed as a local 
expansion of the form 

where LT are local expansion coefficients. 
The difference between the FMM and the 
N log N tree codes is that multipole ex- 
pansions are not evaluated at coarse levels 
of the box hierarchy. Instead, local ex- 
pansions like Eq. 25 are used to accumu- 
late information from the multipole ex- 
pansions corresponding to the boxes in 
the interaction list. The resulting algo- 
rithm requires only O(N) work. Perhaps 
more important, however, is the fact that 
the FMM has a richer analytical structure 
and has been extended to the acoustic 
scattering case by Rokhlin et al. (26-28) 
as well as to a variety of other problems 
and boundary conditions (29-33 ). 

Acoustic scattering. The first thing to re- 
call about the acoustic scattering case is 
that the far field does not have a simple 
structure (Fig. ID). Thus, even though the 
far field attributable to gravitational or 
Coulombic sources can be captured very 

accurately in a few multipole moments, no 
such possibility exists here (34 ). Neverthe- 
less, the pressure field 

can still be expressed as a multipole expan- 
sion 

where hn is a spherical Hankel function and 
a; are far-field expansion coefficients. So 
that we can see how many terms are needed 
to accurately represent the induced field, 
suppose that the acoustic sources are con- 
tained inside a sphere of radius a. Then, as 
shown in (27, 28), the error in truncating 
the expansion (Eq. 26) after p tenns is given 
by 

but only if p > Ikla. In the gravitational 
case, the error bound is unaffected by the 
size of the sphere and depends only on the 
ratio a/r. Here, the number of terms grows 
linearly with both the frequency and the 
size of the scattering region. By .judicious 
use of both far field and local expansions, as 
well as the ability to transform quickly from 
one type to the other, it is possible to obtain 
a fast algorithm that scales like N3I2, N4I3, 
or N log N, depending on the complexity of 
the implementation (27, 28). 

Discussion 

Of the fast summation methods discussed in 
this article, the ones that have been used 

Dynamic memory Micromotor 

Package Interconnect 

Fig. 5. The programs FASTCAP and FAST- 
HENRY, developed at MIT, use fast multipde al- 
gorithms to reduce the time required to analyze 
electrostatic and magnetic intelference in com- 
plex structures from days to minutes. The struc- 
tures shown are three bits of an integrated circuit 
dynamic memocy, an electrostatically actuated 
micromotor, a microprocessor package, and an 
integrated-circuit interconnect structure. 

Fi. 6. A contour plot of the electrostatic potential 
in a composite medium. The medium consists of a 

Fi. A The positions of 81,920 discretized vortex particles initially on the surface of a sphere are shown. uniform background of unit conductivity in which 
Each of the particles initially carries a vorticity corresponding to the solution of potential flow past a solid are embedded a collection of long, slender inclu- 
sphere, that is, PA, where ji = 3/81 sin M, and A is the area of the projected surface element associated sions of conductivity 1 0-6. The outlines of the 
with that particle. The simulation has been evolved according to the Biot-Savart law for 160 time steps. inclusions can be discerned because of the accu- 
The vector directions are not shown, but the magnitude of the vortex strength is color-coded. The mulation of equipotential lines in poorly conduct- 
simulation is by Salmon eta/. (41 ). ing regions (44). 
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most extensively in applications are the tree 
codes and fast multioole methods for orob- 
lems in astrophysics, fluid dynamics, and po- 
tential theory, although a developing area of 
applications is computational chemistry (35- 
37). A few examples are collected here. 

Figure 3 shows a snapshot of a large-scale 
simulation of quasar formation by Katz et al. 
(38), involving lo5 particles. With a tree code 
(39), the calculation was approximately two 
orders of magnitude faster than would have " 
been possible with direct summation. 

In incompressible fluid dynamics (40), 
the velocity field is obtained from the vor- 
ticity field through a Biot-Savart type inte- 
gral (Ey. 3). Salmon et  al. (41 ) have de- 
velo~ed a fast ~arallel  tree code for both 
gravitational and fluid dynamical applica- 
tions. The evolution of a vorticitv distribu- 
tion, discretized as particles and initially on 
the surface of a sphere, is shown in Fig. 4. 

Finally, we would like to indicate how 
fast algorithms can be used to solve a vari- 
ety of problems in electrostatics and mag- 
netostatics (Fig. 5). These problems are 
usually formulated as partial differential 
equations, but their solution can be ex- 
messed as the field attributable to an un- 
known charge or dipole distribution on the 
surface of the object. For example, to solve 
the Dirichlet problem V2U(x) = 0 in a 
domain 0 with U(x) = f(x) on 30,  we 
can represent the solution by 

To satisfy the boundary condition, the un- 
known charge density a (y )  must satisfy the 
integral equation 

To solve this equation, we can discretize the 
boundary into N nodes, and the preceding 
equation is converted into a dense, linear 
system of equations. White and collabora- 

tors have developed several software pack- 
ages for solving such systems on the basis of 
a fast multipole accelerated iterative proce- 
dure (42, 43). My group has also used the 
fast multipole method to look in detail at 
the electrostatic field inside composite me- 
dia with complex geometries (44). A typical 
potential field is shown in Fig. 6. 

Fast hierarchical algorithms are begin- - " 

ning to play a substantial role in scientific 
computing. Although I have concentrated 
on multipole algorithms, which encapsulate 
information in terms of moments, other 
tools from approximation theory give rise to 
complementary approaches (9-1 1). I have 
not attempted to present a comprehensive 
review. Instead, I have tried to explain the 
theoretical foundations of the methods and 
to give some sense for the kinds of problems 
currently being addressed. 
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