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Scalable parallel computer architectures provide the computational performance 
needed for advanced biomedical computing problems. The National Institutes of 
Health have developed a number of parallel algorithms and techniques useful in 
determining biological structure and function. These applications include processing 
electron micrographs to determine the three-dimensional structure of viruses, cal- 
culating the solvent-accessible surface area of proteins to help predict the three- 
dimensional conformation of these molecules from their primary structures, and 
searching for homologous DNA or amino acid sequences in large biological databases. 
Timing results demonstrate substantial performance improvements with parallel im- 
plementations compared with conventional sequential systems. 

High-performance parallel computers pro- 
vide the computational rates necessary for 
advanced biomedical computing problems. 
Biomedical scientists can greatly reduce the 
time it takes to  complete computationally 
intensive tasks and take new approaches in 
processing their data. This advantage may 
allow the inclusion of more data in a cal- 
culation, the determination of a more accu- 
rate result, a reduction in the time needed 
to complete a long computation, or the 
implementation of a new algorithm or more 
realistic model. 

With proper computer network connec- 
tions and interactive user interface, parallel 
computing is readily available to biomedical 
researchers in the laboratory or clinic at the 
investigators' computer workstations. This 
availability makes it possible to include the 
powerful resource of parallel computing as 
another tool that can be used in the re- 
search process. In the next section, we give 
a number of examples where parallel com- 
puting is being applied to biomedical re- 
search at  the National Institutes of Health 
(NIH). W e  describe three of these examples 
in detail to demonstrate how parallel com- 
puting has been used to solve important 
computational problems in biomedicine. As 
shown by our first example, the parallel 
computer has become part of the process of 
determining the structure of the herpes vi- 
rus capsid in a structural biology laboratory 
by greatly reducing the time it takes to 
obtain three-dimensional (3D) reconstruc- 
tions of images from electron micrographs. 

W e  also access the parallel computer from 
workstations in the NIH Clinical Center to  
facilitate clinical investigations. For exam- 
ple, we are using a parallel method to align 
multiple positron emission tomography 
(PET) images to study the progression of 
Alzheimer's disease. The  alignment method 
reduced the time for registering two PET 
images from 6 hours to 10 min. Significant 
time reductions in  the completion of a com- 
putational task can completely change the 
way a procedure is implemented in the lab- 
oratory or clinic. 

Computational Challenges in 
Biomedical Research 

With many of the institutes and the Clin- 
ical Center at NIH, we are working on  a 
variety of research areas of biomedical in- 
terest that can benefit from the application 
of parallel computing. We list in Table 1 a 
number of representative scientific prob- 
lems with their associated computationally 
intensive tasks that can benefit from hiph- " 

performance parallel computing. For some 
of these problems, parallel methods simply 
speed up the completion of a laborious task. 
This is the case with the multidimensional 
nuclear magnetic resonance (NMR) spec- 
troscopy example in which we automate the 
assignment of the signals in the NMR spec- 
trum to the atoms of the protein under 
study (1).  A n  important issue for this type 
of application is the interactive availability 
of the ~ara l le l  comDuter on  demand so that 
the user can appreciate its benefits. In other - - 
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system failure during a long calculation or 
simulation. 

Positron emission tomography is the most 
promising tool for biochemical imaging today. 
A PET image is formed through a computa- 
tional reconstruction process. The quality of 
the resulting image and the computation time 
needed to produce it depend on the chosen 
reconstruction algorithm. Traditionally, Fou- 
rier methods such as the filtered back-~roiec- . , 
tion algorithm, which is fast but can lead to 
artifacts. have been used. Another class of 
methods known as algebraic methods (Z), an 
example of which is the expectation maximi- 
zation (EM) or maximum likelihood (ML) 
algorithm, are known in theory to yield more 
accurate reconstructions or equivalent recon- 
structions with a lower patient dose. The al- 
gebraic methods have not been used in the 
past because of the long computation time 
and the large amount of memory required to 
implement them. In addition, a new genera- 
tion of PET scanners allows for the retraction 
of the lead septa shields, which prevent coin- 
cidence events from beine detected outside - 
the axial plane of the emission. Retracting the 
septa increases the angle over which coinci- 
dence events are accepted and so improves 
the detector sensitivitv and the count rate. 
However, the amount of detected scatter and 
random events also increases with wider ac- 
ceptance angles, and a current debate focuses 
on whether retracted septa scanners can lead 
to improved reconstruction quality. Another 
drawback to retracting the septa is that the 
size of the reconstruction problem grows enor- 
mously, especially with algebraic approaches. 
In a 3D ML reconstruction with typical scan- 
ner geometries, the number of projections 
(rays of coincidence events) grows by an order 
of magnitude, and the size of the probability 
matrix, which is used throughout the ML " 

reconstruction, can grow by four orders of 
magnitude or more. With the availability of 
high-performance parallel computer technol- 
ogy, we can now consider applying the ML 
algorithm to the problem of generating a full 
3D PET reconstruction. 

In addition to our program at NIH, there 
are many research groups throughout the 
United States that are applying parallel 
computing to biomedical problems (3). 
Much of this activity is part of the multiple 
agency, Federal High Performance Comput- 
ing and Communications (HPCC) Program 
that has the goal of accelerating the devel- 
opment of future generations of high-per- 
formance comDuters and networks and the 
use of these resources throughout the 
American economy. For example, the Na- 
tional Science Foundation (NSF) activities 
have included the establishment of the fol- 
lowing three Grand Challenge Application 
Groups: Advanced Computational Ap- 
proaches to  Biomolecular Modeling and 
Structure Determination, Understanding 
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Human Joint Mechanics Through Ad- 
vanced Computational Models, and Imag- 
ing in Biological Research. In work jointly 
supported by NIH, NSF, and the Depart- 
ment of Energy, researchers at New York 
University, Sloan Kettering Cancer Center, 
and Oak Ridee National Laboratorv are 

u 

studying the effects of biochemically acti- 
vated environmental chemicals on DNA. 

Exploiting Natural Concurrency 

In developing computationally demanding 
biological applications, we divide a problem 
into many parts that can be independently 
executed on different processors. The speed- 
up that can be achieved by having n pro- 
cessors work concurrently on a computa- 
tional problem is at most n times faster-than 
a single processor. Although attempts are 
made to achieve this ideal speedup, the 
ability to attain it in practice is determined 
by the efficiency of the developed parallel 
algorithm or method to exploit the natural 
concurrency in the computing problem. 
The actual speedup, which describes paral- 
lel performance, is defined as S, = T1/Tn, 
where Sn is speedup on n processors, TI is 
the time required to solve the problem on one 
processor, and T, is the time required for the 
parallel algorithm to solve the problem with n 
processors. The efficiency of an algorithm is 
defined as the speedup per processor multi- 
plied by 100, or En = (S,ln) x 100, with the 
ideal efficiencv beine 100%. 

Three limitation; on improving speedup 
are (i) the fraction of the comuutine task that . . . u 

is serial and can only execute on a single 
processor; (ii) the amount of parallelism in 
the task, that is, how much of the task can be 
divided into parts that can be independently 
executed on different processors; and (iii) the 
communication overhead, that is, the amount 
of time needed to transmit information be- 
tween processors that cannot be overlapped 
with processing (4). If the serial fraction and 
the communication overhead times are small 
comuared to the time reauired to comulete 
the fraction of the task executed in parallel, 
the speedup approaches the ideal value for n 
(5). A computational scientist makes this se- 
rial fraction small by choosing both a problem 
that is large enough to benefit from multiple 
processors and the proper parallel algorithm 
( 6 ) ,  which may or may not be the same one 
used for the same problem on a sequential 
system. The computational scientist also de- 
signs algorithms that minimize the amount of 
required interprocessor communication. The 
performance advantage attained with a paral- 
lel computer over a sequential computer de- 
pends on the type of problem solved and the 
wav it is decomuosed. Care is taken to reduce 
the' overhead ihroduced by the parallel de- 
composition, because it can adversely affect 
the performance. We  attempt to distribute 

the computing load evenly over the available 
processors throughout the computation. This 
last issue is what is referred to as the load 
balancing problem. 

Determining Virus Structure from 
Electron Micrographs 

High-resolution cryoelectron microscopy in 
combination with 3D computer image re- 
construction allows the structure of large 
icosahedral viruses to be studied. When the 
image noise is neglected and all the virus 
particles are assumed to have the same 3D 
structure, the specimens represented in the 
micrograph, which is a 2D projection along 
the line of sight, can be assumed to differ 
only in the orientations from which they 
are respectively viewed. These orientations 
must be determined before the reconstruc- 
tion can be performed. A formalism that 
allows these orientations to be solved and a 
single 3D density map to be calculated from 
many noisy 2D projections was developed 
around 1970 (7). The introduction of cryo- 
electron microscopy in the early 1980s with 
its vastly improved image quality provided a 
stimulus for further refinement of the recon- 
struction procedures (8, 9). Further exten- 
sion of the resolution, particularly for very 
large viruses such as the herpes simplex 

virus ( lo) ,  will require the inclusion of 
much larger numbers of particles in the 
calculation, more finely sampled data, and 
refinement of the orientation angles to 
higher accuracy. Our approach to this chal- 
lenee has been to mobilize the uarallel corn- - 
puter, starting with the sequential methods 
provided by Baker and colleagues (9). 

The  3D reconstruction of such viruses 
begins with one or more electron micro- 
graphs (Fig. I ) ,  in which each particle on 
the micrograph is a 2D projection of a virus 
capsid specimen. The relative orientation of 
each specimen, denoted by polar and azi- 
muthal angle pair ( O , + } ,  defines the angle or 
view of the corresponding projection. If the 
effect of noise is neglected and all particles 
are assumed to be identical, the virus capsid 
specimens that generated the set of particles 
in the 2D micrograph can be considered 
identical in three dimensions exceut for 
their orientation. The reconstruction pro- 
cess takes advantage of the icosahedral svm- 
metry of these virkes and the Fourier slice 
theorem (7), which states that the orienta- 
tion of the particle plane in 3D Fourier 
space is identical to that of the projection 
plane. In Fourier space, each 2D projection 
is equivalent to 59 other symmetry-related 
views owing to the icosahedral symmetry, 
and these equivalent views all intersect at 

Table 1. Applications of parallel computers to biomedical problems 

Research area of biomedical Representative scientific Associated computationally 
interest problem intensive task 

Structural biology: electron 
microscopy 

Structural biology: 
multidimensional NMR 
spectroscopy 

Structural biology: x-ray 
crystallography 

Structural biology: protein 
chemistry 

Computational chemistry: 
molecular dynamics 

Computational chemistry: 
auantum mechanics 

Biotechnology: genetic and 
protein sequence analysis 

Genetics: linkage analysis 

Medical imaging: PET 

Medical imaging: radiation 
treatment planning 

Determine viral assembly 
mechanisms and identify 
individual protein 
components in capsid shells 

Determine the 3D structure of 
proteins 

Determine the 3D structure of 
proteins 

Predict the 3D structure of a 
protein from its primary 
structure 

Study the kinetics of ultrafast 
chemical reactions in 
solution 

Determine the action of 
anti-cancer drugs on the 
DNA of cancer cells 

Discover relations and 
common motifs in nucleic 
acid and protein sequences 

Identify genes or regions of 
DNA involved in hereditary 
diseases 

Obtain PET Images of the 
brain that provide metabolic 
information 

Find the optimal radiation 
treatment plan for a variety 
of human cancers 

Construct the 3D structure of 
viruses from electron 
micrographs 

Assign peaks in the NMR 
spectrum to atoms in the 
protein 

Perform crystallographic 
refinement for a protein 
molecule 

Calculate the solvent ASA of a 
protein 

Simulate chemical reactions using 
the technique of molecular 
dynamics 

Investigate the energetics of 
different cross-linked structures 
using ab initio quantum 
chemical methods 

Analyze protein and nucleic acid 
sequences in large databases 

Calculate the log of the odds ratio 
needed to perform linkage 
analysis 

Reconstruct retracted-septa PET 
data using the expectation 
maximization algorithm 

Calculate the 3D radiation dose 
distribution for a given patient 
anatomy and configuration of 
beams 
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the Fourier origin. For each projected par- 
ticle, the reconstruction algorithm interpo- 
lates that projection's Fourier transform, in 
a plane determined by its orientation pa- 
rameters, onto a 3D grid in Fourier space. 

Figure 2 shows the major steps in the 
reconstruction procedure starting with 
the cryoelectron microscopy and the digi- 
tization of the resulting micrograph with a 
microdensitometer. Preprocessing steps 
include selection of individual particles to 
be included in the reconstruction, remov- 
al of extraneous features such as an in- 
truding neighbor particle or co-projected 
piece of contaminating ice, subtraction of 
the background gradient, normalization 
for constant mean and variance of the 
density values, and estimation of the cen- 
ter of each particle. Before we can per- 
form a multiple particle reconstruction, 
we must obtain an estimate of each par- 
ticle's orientation parameters, {8,+). The 
steps involved in determining particle ori- 
entations are the most computationally 
intensive in the reconstruction process. 
We discuss the parallel implementation of 
the orientation estimation step, designat- 
ed FindView, and the orientation refine- 
ment step, named Emicograd. 

The FindView step uses the common lines 
procedure of Fourier analysis as implemented 
by Fuller (8) and Baker (9) to generate a set of 
candidate orientations for each  article. The 
common lines are pairs of radial lines in the 
Fourier transform of a particle projection 
along which the Fourier transform should be 
identical due to the icosahedral symmetry of 
the virus. Along any projection, there are 37 

Fig. 1. (Background) A cryo-electron micro- 
graph of herpes simplex virus (type 1) A capsids, 
empty of DNA. (Foreground) A surface-shaded 
representation of a 3D computer reconstruction 
obtained from 104 2D images (in collaboration 
with F. P. Booy. J. F. Conway, and A. C. Steven of 
NIH and W. W. Newcomb and J. C. Brown of the 
University of Virginia). 

common line pairs that are specific to a par- 
ticular orientation, {8,,+,). Once correct ori- 
entations are selected from the FindView list 
of candidates, they are refined for each parti- 
cle by Emicograd, which also uses common 
lines. Whereas FindView operates on each 
particle independently and separately, Emico- 
grad uses dormation from all the particles in 
the set to refine the orientation parameters for 
each particular particle. This distinction leads 
to different parallel computing approaches: 
FindView replicates its data on each processor 
while Emicograd dismbutes its data among 
the processors. 

FindView performs an exhaustive search 
through the orientation space to find those 
orientations whose common line Fourier 
transform values are most similar to those in 
the 2D Fourier d o r m  of the particle pro- 
jection ( I  1 ). Icosahedral symmetry conditions 
permit the orientation search to be limited to 
an asymmetric search unit, which is defined to 
be a mangle with its apex at a threefold axis 
of symmetry and base vertices on fivefold axes 
of symmetry (Fig. 3, right). Orientations out- 
side the search unit are mapped to an equiv- 
alent orientation inside this mangle. An ex- 
haustive search scans the orientation space in 
approximately one degree or some other fixed 
increment over the entire asyrnmemc search 
unit. During the search, the required calcula- 
tions at a given orientation are completely 
independent of the calculations at the other 
orientations. A processor can therefore per- 

form the calculations over certain specified 
orientations while other processors complete 
the remaining orientations (Fig. 3, left). Every 
processor stores a replicate of the particle's 
projection image in memory. When the 
search is complete, the processors exchange a 
relatively small amount of data so that the 
best candidate orientations can be selected. 
The eficiency of the parallel implementation 
of FindView is almost the ideal 100% because 
it is easy to divide the search through the 
orientation space into independent tasks, the 
processors do not communicate until the end 
of the search, and the workload balance 
among the processors varies only slightly be- 
cause of small differences in the number of 
independent common lines per orientation. 

The orientation refinement step known as 
Emicograd refines the initial orientations sup- 
plied by F i i e w ,  producing a final set of 
particle projections to be used in the recon- 
struction. Performing calculations similar to 
those in FindView, Emicograd compares the 
values along the common lines of the Fourier 
transform of particle projections to find the 
  article orientation that minimizes the mean- 
squared error (cross-residual) between a given 
particle and all other particles. In a con- 
strained refinement, the orientations of only 
one particle may be moved or refined while 
the others stay fixed. Constrained refinements 
are used to select the preferred orientation of 
a particular particle from the candidate orien- 
tations provided by FindView for all candi- 

Fig. 2. Block diagram of steps involved in the 3D reconstruction of icosahedral virus images. The most 
computationally demanding steps are FindWew, which generates initial estimates of individual particle 
orientations, and Emicograd, which refines particle orientations against others in the set. 
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Fig. 3. (Right) Icosahedron showing orientation search parameters 8 and +. The asymmetric search unit 
is the while triangle. (Left) Asymmetric search unit illustrating the pattern of parallelization. Numbers 
inside the triangle represent processors assigned to that orientation in the search (four-processor case). 
With one-degree increments between angles, paralleliation across 682 orientations provides good load 
balance up to at least 128 processors. 
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dates against a small, fixed, stable set. The 
large unconstrained refinements, which opti- 
mize the orientations of each particle against 
every other particle, are the most computa- 
tionally demanding and are performed when 
the orientations of all images are optimized 
before a multiple particle reconstruction is 
performed. Memory and computational re- 
quirements of these large refinements have 
traditionally limited the number of particles 
allowed in the reconstruction. 

The parallel implementation of Emico- 
grad distributes the particle images across 

Fig. 4. Shown in red is the location of a minor 
capsid protein called VP26 (1 2 kD) (12) from her- 
pes simplex virus (type 1). This protein was 
mapped in experiments in which it was first ex- 
tracted from purified capsids by treatment with 
guanidine hydrochloride (13), purified, and then 
rebound to the capsids. The top right image 
shows the depleted capsid (blue) and the addi- 
tional density (red) visualized when VP26 was re- 
bound. The two 3D reconstructions in the dier- 
ence map (top left image) are based on 35 and 40 
images, respectively, which could have been pro- 
cessed with a conventional sequential computer. 
Parallel computing extended the analysis to in- 
clude 135 and 167 images, respectively, yielding 
the bottom image. The resolution was thus im- 
proved from approximately 3.5 to under 3.0 nm, 
and the signal-to-noise ratio was substantially im- 
proved. The clusters of six VP26 subunits, shown 
blurred together in the top image, are clearly re- 
solved in the bottom image (in collaboration with 
F. P. Booy, J. F. Conway, and A. C. Steven of NIH 
and W. W. Newcomb and J. C. Brown of the 
University of Virginia). 

the processors and thereby substantially 
increases the number of particles that may 
be included in a reconstruction. This data 
distribution technique requires a signifi- 
cant amount of interprocessor communi- 
cation in the com~utation of the refine- 
ment criteria. Consequently, the parallel 
performance of Emicograd is less favor- 
able than that of FindView. A DEC (Dig- 
ital Equipment Corporation, Maynard, 
Massachusetts) VAX 4000-500 processor 
requires 10.4 min to run the FindView 
search on a single particle while a single 
processor of an Intel (Intel Supercom- 
puter Systems Division, Beaverton, Ore- 
gon) iPSCl860 parallel computer requires 
7.1 min and 64 iPSCl860 processors to- 
gether require 7.2 s, a speedup of 59. In 
contrast, an unconstrained refinement of 
55 particles on a VAX 4000-500 takes 
110 min to complete. This same process 
runs in 4.3 min on 64 iPSCl860 proces- 
sors, a speedup of only 38 from the single 
processor time of 165 min. To put these 
times in perspective, in a recent recon- 
struction involving 335 particles and 32 
iPSCl860 processors, 5.5 total compute 
hours were spent on FindView while 33.5 
total compute hours were spent on con- 
strained and unconstrained Emicograd re- 
finements. 

As shown in Fig. 4, Booy and col- 
leagues (1 2) recently reported locating a 
small protein, VP26 (1 3), on the hexomer 
tips of the human herpes simplex virus 
capsid. This detection of six distinct sub- 
units was, in part, due to the signal-to- 
noise improvements that have been 
achieved as a result of the larger number 
of particles in the reconstruction. The 
figure demonstrates the difference be- 
tween earlier reconstructions with 35 and 
40 particles and more recent reconstruc- 
tions with 135 and 167 particles. 

Protein Structure Prediction 

Since Anfinsen (14) first noted that the 
information needed to determine how a 
protein folds resides completely within its 
amino acid sequence, the problem of pre- 
dicting protein folding has been one of the 
most important unsolved problems in bio- 
chemistry. Understanding the 3D structure 
of proteins is important to studying their 
function in living systems and designing 
new ones for biological and medical purpos- 
es. The amino acid sequences of proteins 
are being discovered at an explosive rate. 
However, experimental procedures for de- 
termining their 3D structure, such as x-ray 
crystallography and NMR Spectroscopy, are 
slow, costly, and complex. A need exists for 
theoretical and computational techniques 
that can be used to help predict the struc- 
ture from the sequence. 

The protein folding problem remains 
unsolved because all of the biochemical 
rules that govern the folding and stability of 
 rotei ins are not vet known. If these ~ l e s  
were known, a computer program could be 
written to simulate the folding of a protein. 
In conjunction with the scientific work that 
is being done to understand the forces in- 
volved in protein folding, an alternative 
computer approach is to write a program 
that searches through all the possible pro- 
tein conformations to find the ideal one. 
However. a search through the entire con- " 
formation space would require a prohibitive 
amount of computer time. The popular lat- 
tice-space Monte Carlo method (15) has 
been used to reduce the number of possible 
protein conformations significantly by con- 
fining a protein onto a lattice. This method 
does not always yield a useful result because 
of the distortion introduced in the predict- 
ed structure by reducing the possible num- 
ber of conformations. 

At NIH, we are developing parallel com- 
puting methods for simulating protein fold- 
ing so that more possible conformations can 
be considered and a more realistic energy 
function can be computed. This work in- 
volves strategies for searching through a 
large number of possible structures repre- 
senting different energy states. The compu- 
tationally intensive parts of a simulation are 
the long search through the great number of 
possible conformations and the computa- 
tion of the free energy of the structures 
being considered during the simulation: We 
use a potential energy function that is the 
sum of three energy terms (1 6,17). The first 
term is an effective potential based on the 
+,+ angle probabilities of the protein's main 
chain. The second term is due to hydrogen 
bonding between the residues of the pro- 
tein. The time to calculate these two terms 
is short. The third term is the hydrophobic 
potential that is proportional to the sol- 
vent-accessible surface area (ASA) of the 
protein molecule. The calculation of the 
ASA of the numerous structures considered 
in the simulation requires parallel computer 
performance. 

We have used the Lee and Richards 
algorithm (18) to determine the ASA of a 
protein. With this algorithm, we consider a 
protein molecule as a set of interlocking 
spheres, one for each atom of the protein. 
The radius of the sphere for an atom, j, is 
given by the sum of the van der Waals radii 
of the atom j and the chosen solvent. In our 
work, the Lee and Richards set of the van 
der Waals radii are used and the solvent 
radius R, was set to 1.4 A, corresponding to 
that of water. 

The entire set of interlocking spheres is 
sectioned by a set of parallel planes perpen- 
dicular to the z axis with a predetermined 
spacing, AZ. The intersection of each 
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sphere with a given plane appears as a cir- 
cle. The arcs of a circle that are within 
other circles are eliminated. The drawing in - 
any one plane thus becomes the trace of the 
accessible surface on the given section (Fig. 
5). If any part of the circle for a given atom 
is drawn, the atom is accessible and the 
summed length of all arcs for the atom will 
be a measure of the ASA of the atom in 
that  lane. The total ASA of the atom is 
given by numerical integration of all the 
summed arc lengths appearing in all sec- 
tions (19). 

A n  evaluation of the eauation for de- 
termining the ASA of a protein reveals 
that the ASA calculation can be Der- 
formed on individual atoms separately, 
and independently, if the location of the 
neighboring atoms of each atom is 
known. W e  can use a data replication 
method in which each processor keeps a 
complete list of atomic coordinates of all 
the atoms in the protein structure. Subse- 
quently, no communication is required be- 
tween processors until the end of the compu- 
tation. On the basis of these observations, we 
implemented the following parallel algorithm 
(20): (i) Read the atomic coordinates and 
broadcast all N atomic coordinates to each 
processor, allowing each processor to keep a 
complete list of the atomic coordinates. (ii) 
Partition the atoms, which represent the com- 
puting workload, among the n processors: For 
each processor i, where 1 5 i 5 n, determine 
a set of atoms for which it must compute the 
ASA; these atoms are defined in the range 
(start[i], end[i]) for processor i, where 1 5 
start[i],end[i] 5 N.  (iii) In parallel, for all 
processors i: First, find the neighboring atoms, 
qj, for each atom j that is assigned to proces- 
sor i, that is, for start[i] 5 j 5 end[i]; next, once 
the neighboring atoms are identified, com- 
pute the ASA of its assigned atoms. (iv) 
C o m ~ u t e  the global sum of the ASAs com- 

u 

puted by ea'ch processor. The synchronization 
and communication between processors are 
arranged to occur at this step to complete this 
global summation. 

Partitioning and mapping the atoms 
across the n processors in step (ii) is done 
with the objective of balancing the work- 

Fig. 5. When the solvent ASA is 
determined, the protein is sec- 
tioned by a set of parallel planes 
perpendicular to the z axis with 
fixed spacing between planes. The 
radius for an atom is given by the 
sum of the van der Waals radii of 
that atom and the chosen solvent. 
The trace of the accessible surface 
can be seen where the arcs of the 
atoms do not overlap. 

load. A n  obvious scheme is a uniform Dar- 
titioning and mapping of the atoms across 
the processors; that is, allocate an equal 
number of N/n atoms to each processor such 
that processor i gets start[i] = (i - 1)Nln + 
1 to end[i] = iNln. In a dynamic protein 
folding simulation, the ASA algorithm is 
invoked to compute the ASA for each of 
the millions of sequentially formed protein 
structures. In the sequence of structures, the 
atomic coordinates of the atoms change be- 
cause of the movement of the atoms in the 
protein structure. Therefore, the number of 
neighbor atoms for each atom changes from 
structure to structure, and the workload varies 
accordingly. This change is especially severe 
in protein folding studies in which the struc- 
ture of the protein changes from a loosely 
coiled string to a compact globular form. A 
mapping that was optimal at the start of the 
folding process may be inefficient after a num- 
ber of folding iterations. Therefore, it is nec- 
essary to remap the workload dynamically 
among the processors, that is, to repartition 
the atoms as the simulation progresses. 

A remapping scheme must ( i )  deter- 
mine when a remapping is necessary, (ii) 
dynamically estimate and compute the 
workload distribution, and (iii) comDute . , 

an  efficient mapping of the workload to 
the Drocessors. T o  reduce overhead, we 
perfdrm a remapping after a specified 
number of iterations in  the simulation. 
W e  estimate the workload of each atom j 
by its number of neighboring atoms, qj .  
The  total computational workload for the 
entire protein molecule is the sum of the 
individual atom workloads, Xi qj, and the 
average workload is this sum divided by the 
total number of processors, n. We then map 
the atoms to the processors so that each 
processor is assigned atoms to the point 
where its assigned workload is equal to or 
iust exceeds the average workload. 

u 

The parallel implementation of the 
ASA calculation has allowed us to in- 
clude this factor in our potential energy 
function. A Silicon Graphics (Mountain 
View, California) Indigo R3000 processor 
required 48.5 s to perform a single ASA 
calculation for a 333-residue protein. The  

$\ Sohrent-accessible surface i area 
7 1 

same ASA calculation was completed in 
0.8 s on  64 processors of an  Intel iPSC/ 
860 parallel computer. This difference ap- 
proximately reduces every hour of com- 
puter time needed to calculate the ASA 
during a protein folding simulation o n  a 
workstation to 1 min on  the parallel com- 
puter with 64 processors. 

Genetic Database Searching 

The human genome project has generated a 
massive volume of genetic data, such as that 
found in the GenBank (21). This database 
(release 82.0 from the National Center for 
Biotechnology Information at the National 
Library of Medicine of NIH) contains 
169,896 DNA sequences with 180,589,455 
bases and their related biological and bib- 
liographical information. Currently, Gen- 
Bank not only contains human DNA se- 
quences but also the sequences of plants, 
viruses, bacteria, and other species. 

One of the standard methods used to 
acquire new information from GenBank is 
to search the entire database for homolo- 
gous sequences. We search for patterns 
across different species as well as within the 
same one. When we discover a new se- 
quence, we search the database for sequenc- 
es that are similar or relevant to this dis- 
covery. In addition, we often search the 
database at regular intervals because new 
sequences are idded  daily. As the size of 
GenBank increases, it remains critical to 
keep the search time short. 

To  search for the most homologous se- 
quence to a given query sequence, we need 
an algorithm that defines the similarity be- 
tween two sequences. That is, we must first 
determine the degree of similarity between 
two sequences. The preferred comparison 
algorithm was developed by Smith and Wa- 
terman (22) and later modified by Gotoh 
(23). This algorithm uses a dynamic pro- 
gramming technique to compare two se- 
quences (24) and requires M x N compu- 
tational steps to find a similarity score be- 
tween two sequences of respective lengths 
M and N .  

We  have developed a parallel sequence 
searching method (25) in which the origi- 
nal seauences in the database are  laced 
into one of n buckets (smaller databases), 
where n is the largest number of processors, 
so that the difference between the sum of 
the seauence lengths in  the smallest and - 
those in the largest buckets is minimized. In 
other words, each bucket must have approx- 
imately the same number of bases. When 
the original sequences are divided this way, 
each processor can search its own bucket 
without communicating with other proces- 
sors if all n processors are used. If only n/2 
processors are used, each .processor can 
search two buckets. The number of buckets 
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is always a multiple of the number of pro- 
cessors. Once all the processors find their 
best local homologous sequence, the best 
global homologous sequence can also be 
found. A number of other groups have de- 
veloped parallel sequence searching meth- 
ods (26), and we compare our method with 
theirs in reference (25). 

We  implemented an algorithm that 
places the sequences of the original data- 
base into one of the n buckets. First, the 
sequences must be sorted in decreasing 
length order. Then, starting from the long- 
est one, each sequence is placed into the 
bucket that has the smallest sum of se- 
quence lengths until all the sequences in 
the database are assigned to a bucket. The 
distribution algorithm required less than 30 
s to place the 169,896 sequences of Gen- 
Bank into 128 buckets on a desk to^ work- 
station. We can determine the workload 
balance. that is, the difference between the 
largest amount of sequence comparison 
work any processor will have and the least 
amount of sequence comparison work any 
processor will have, for this distribution of 
sequences among the processors by comput- 
ing the percentage of workload imbalance, 
given by 

Largest bucket - Smallest bucket 

Largest bucket 

Table 2 shows that for our sequence distri- 
bution algorithm the imbalance is very 
small for the entire range of processor 
numbers. 

T o  minimize the communication over- 
head, we fetch only one sequence at a time 
instead of loading the entire database into - 
memory at one time. The next sequence is 
fetched while a processor compares the pre- 
viously fetched one. The fetch time can 
then be overlapped with the processing 
time. There is incomplete overlap for only 
the first sequence and occasionally after a 
short sequence has been fetched. T o  expe- 
dite the sequence fetching process, we store 
the seauences so that an unformatted read 
function, which is faster than the formatted 
one, can be used to fetch a sequence and 

Table 2. The percentage of workload imbalance 
when the sequences of the GenBank database 
are dlvided into buckets. 

only one read operation is needed to fetch 
each sequence entry. 

Our parallel sequence searching method 
achieved ideal speedup when implemented 
on an Intel iPSC/860 parallel computer. A 
single iPSC/860 processor required approxi- 
mately the same amount of time to complete 
a GenBank query as a SUN SPARCstation 2 
processor, so the multiple of improvement 
over this type of workstation is simply the 
number of processors used on the parallel 
system. For example, a GenBank query for the 
human gene for tvrosine aminotransferase - 
with 1600 base pairs required approximately 
120 hours on a single Drocessor but finished in 

u L 

less than 2 hours with 64 processors of the 
iPSC/860 parallel computer. 

Future Prospects 

Parallel computing can be used effectively 
in a variety of biomedical problems. The 
high computational efficiencies we obtained 
for the three illustrated applications are 
shown in Table 3 (27). For the 3D recon- 
struction of virus caosids from electron mi- 
crographs, the increased performance at- 
tained with parallel computing allows us to 
use more virus particles in their reconstruc- 
tions. Increasing the number of particles has 
significantly improved the signal-to-noise 
ratios of the 3D reconstructions. In the 
future, we hope to obtain improved resolu- 
tion of the reconstructions by a combina- 
tion of new methods. Parallel computing 
can greatly reduce the time required to 
calculate the solvent ASA of a protein 
molecule. This reduction makes it possible 
to use this im~or tan t  measure in dvnamical 
simulations of proteins where a million or 
more structures must be considered. Finallv. , , 
as the number of DNA and amino acid 
seauences in GenBank and other databases 
grows exponentially, we will need the com- 
putational tools to analyze the sequence 
patterns contained therein. As can be seen 

Table 3. Efficiencies for the parallel implementa- 
tion of three computationally intensive biomedical 
applications: A, finding the initial orientation of a 
single herpes simplex virus particle with FindView; 
B, calculating the solvent ASA of a 2556-atom 
protein; and C, comparing a 1335-base DNA se- 
quence with the GenBank database (release 
82.0). 

Number of 
processors 

Percentage 
of load 

imbalance 

Number of Application efficiency, S, 

processors, n A B C 
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from our implementation of a parallel se- 
quence analysis method, parallel computing 
can provide the performance we need to use 
large databases in our research. 
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