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ent locations near the recording electrode. Syn- 
aptic currents were evoked at a frequency of 0.2 
Hz by means of bipolar electrodes placed near 
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responses. 
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ing constant hyperpolarizing current that was 
sufficient to prevent elevated spontaneous firing. 
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NMR Solution Structure of a Peptide 
Nucleic Acid Complexed with RNA 

Stephen C. Brown,* Stephen A. Thomson, James M. Veal, 
Donald G. Davis 

Peptide nucleic acids (PNA) incorporating nucleic acid bases into an achiral polyamide 
backbone bind to DNA in a sequence-dependent manner. The.structure of a PNA- 
ribonucleic acid (RNA) complex was determined with nuclear magnetic resonance meth- 
ods:A hexameric PNA formed a 1 : I  complex with a complementary RNA that is an 
antiparallel, right-handed double helix with Watson-Crick base pairing similar to the " A  
form structure of RNA duplexes. The achiral PNA backbone assumed a distinct confor- 
mation upon binding that differed from previously proposed models and provides a basis 
for further structure-based design of antisense agents. 

A novel therapeutic strategy is to titrate 
the concentration of a target enzyme or 
receptor by altering its expression either at 
the transcriptional level (antigene) or 
translational level (antisense) by means of 
an agent directed against the nucleic acid 
sequence encoding the target (1). Al- 
though this approach has been shown to 
work in mammalian and plant cells (2) 
with the use of natural and modified nu- 
cleic- acids (3), significant obstacles to 
using such gene-targeted agents to treat 
human disease remain unsolved (4). PNAs 
incorporating the nucleic acid bases ade- 
nine, cytosine, thymine, and guanine into 
a polyamide backbone have been de- 
scribed (5) and are of interest as gene- 
targeting agents. They are made with stan- 
dard peptide.chemistries fully compatible 
with automated solid-phase synthesis, 
bind more tightly to their DNA targets 
than does the cognate DNA strand, and 
are sensitive to mismatch (6). ~, 

We conducted a nuclear magnetic res- 
onance (NMR) investigation to describe 
the structure of a PNA-RNA complex 
containing all four common bases. The 
sequence GAACTC chosen for the PNA 
(Fig. 1) is capped with G-C base pairs to 
improve the stability of the complex. The 
PNA was synthesized with >98% enrich- 
ment of 13C and 15N nuclei on the back- 
bone (7) of the thymine PNA monomer. 
In this way, isotope-filtering and isotope- 

detecting heteronuclear NMR experi- 
ments (8) could facilitate 'H resonance 
assignments and provide more information 
regarding the structure and dynamics of 
the PNA backbone. 

Titrations of PNA GAACTC-K#(bis- 
succinyl) and r(GAGUUC) followed by 
NMR indicated only a 1: 1 complex 
formed at all ratios, with six imino reso- 
nances appearing from reduced solvent 
exchange rates (Fig. 2A). NMR spectra of 
the uncomplexed PNA indicated that 
many conformers were present in slow 
chemical exchange (Fig. 2C) because of 
cis-trans equilibria about the secondary 
amide bond, x,, of each PNA residue, 
whereas in the PNA-RNA complex only 
one resonance was detected for each pro- 
ton (Fig. 2B). These data suggest that the 
PNA backbone adopts a single X, confor- 
mation when bound to the complementary 
RNA strand. 

A complete set of two-dimen~ional 
(2D) homonuclear NMR data (9) provid- 
ed proton resonance assignments of the 
PNA-RNA complex by standard method- 
ologies (1 0). The single thymine residue 
(T,) was easily identified by both double- 
quantum (2Q) and total correlation spec- 
troscopy (TOCSY) spectra (9). Observa- 
tion of strong nuclear Overhauser effect 
(NOE) cross peaks to two adjacent pyrim- 
idine H5,H6 proton pairs identified these 
as the flanking cytosine bases C4 and C6. 
NOE cross peaks between cytosine H5 and 

Glaxo Research Institute, Research Triangle Park, NC 4-NH2 resonances were fdllowed to the 
27709, USA. guanine imino proton, whereas NOES 
*To whom correspondence should be addressed. among the six imino resonances and aro- 
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Table 1. Conformational parameters for PNA-RNA heteroduplex. The the torsional angles defined for the PNA structure (both in degrees) in Fig. 
symbols a, P, -y, 6, E, (, x, x,, x,, and x, represent either the standard 1. The pseudorotation value (P), and the degree of pucker (7) are given. 
torsional angles (in degrees) describing nucleic acid conformation (10) or Principal values are for the simulated annealing structure with the lowest 

RNA 
- - -  

Base (Y P Y 6 E 5 x P T 

matic Drotons of the bases established 
their assignments. The intermolecular rec- 
ognition is standard Watson-Crick for all - 
base pairs: For G-C base pairs, there were 
strong NOE cross peaks from the cytosine 
4 NH, to the guanine imino proton; for 
A-T base pairs, there was a strong NOE 
from the thymine imino to the H2 of 
the paired .adenine and a weaker NOE 
to the adenine 6 NH,. Adenine H2 and 
H8 resonances were distinguished by 
the chemical shift of their attached car- 
bon atom, determined by a 2D 'H-13C 
heteronuclear multiple quantum coher- 
ence (HMQC) experiment (8) at natural 
abundance. 

Assignments of RNA backbone reso- 
nances proceeded from the base assign- 

ments. RNA HI '  resonances were distin- 
guishable by their chemical shifts (5 to 
6 ppm), whereas the remaining ri- 
bose protons were grouped together (3 to 
5 ppm). Scalar couplings from the HI'  
to other protons were negligible (<0.5 
Hz), so .NOE buildup curves were exam- 
ined and assignments of ribose resonances 
were made for each RNA residue. Assign- 
ments of ribose H3' and H5',5" reso- 
nances were verified with 31P-1H cor- 
relation spectra (8). Inspection of the 
NOE network among ribose and base 
protons revealed that (i) the glycosidic 
torsion angle is anti, not syn, for each 
RNA residue and that (ii) the interresi- 
due and intraresidue NOE patterns are 
typical of "A" form helices (lo), with 

Flg. 1. A PNA structure with atom and torsion- 
angle labeling convention; B, nucleic acid 
base. The PNA sequence follows the peptide 
convention, left-to-right, corresponding to NH, 
to COOH: The PNA(GAACTC)-K#(bis-succinyl) 
sequence was studied. The COOH-terminus 
was capped with an amidated lysine, and the 
two free amines were succinylated to improve 
solubilities (7). 

Fig. 2. lH-NMR spectra at 25°C of 
(A) jump-and-return of PNA-RNA 
complex with six imino reso- 
nances (12 to 15 ppm) (B) 15N- 
edited spin-echo difference spec- 
trum (8) of PNA-RNA complex. 
The single 15N-labeled PNA am- 
ide (T,) shows a single sharp 
resonance. (C) Uncomplexed 
PNA, identical conditions and ex- 
periment as in (B). The single 
labeled amide proton displays 
several resonances in slow ex- 
change, due to cis-trans equilib- 
ria about the secondary amide 
(xl) of each monomer in the hex- 
americ PNA. 

14.0 12.0 10.0 8.0 6.0 

Chemical shift (ppm) 

especially strong H2'-H6,H8 sequentials. 
Assignments of PNA backbone reso- 

nances were more difficult. The standard 
PNA backbone manomer contains four 
geminal proton pairs that have nearly 
degenerate chemical shifts, and no useful 
homonuclear vicinal scalar couplings ex- 
ist. However, 2D homonuclear 2Q spectra 
indicated large chemical shift differences 
between the diastereotopic protons in all 
24 geminal pairs of the six PNA residues. 
Each of the six PNA backbone amide 
(NH1') resonances was resolved, and 
TOCSY transfer without water presatura- 
tion (I I)  established assignments of the 
NHlr ,  H2',H2" and H3',H3" resonances. 
The-G, PNA amide was assigned by NOE 
observations to a succinyl methylene, and 
a NOE "walk" from the amide to the 
COOH-terminus permitted the complete 
assignment of the PNA backbone. NOES 
between each backbone amide to intra- 
residue H3',H3" protons and H5',H5" 
protons of the preceding residue were ob- 
served, while NOE interactions of 
H8',H8" geminal pairs with base H6,H8 
and H3',H3" protons established their as- 
signments. Thus, a complete proton reso- 
nance assignment of the complex was 
achieved. 

These assignments based on NOE pat- 
terns were confirmed with 2D heteronu- 
clear editing or detection experiments (8) 
that focused information oi the thymine 
PNA backbone resonances. Two-dimen- 
sional 13C-filtered NOESY experiments 
were crucial in further identification of the 
local conformation of the PNA backbone. 
NOES were observed from the H8" proton 
to the H3' proton (Fig. 3) but not to the 
H5',H5" protons. NOE interactions be- 
tween the base H6 or H8 proton and the 
backbone H8',H8" protons were strongly 
asymmetric in intensity, with the base 
proton to H8" interaction being signifi- 
cantly stronger. The NMR data combined 
with the observation of an overall antipar- 
allel conformation for the PNA-RNA du- 
plex supplied constraints on the conforma- 
tion of the PNA backbone within a duplex 
structure. 
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root-mean-square deviation from the average structure of all simulated similar to those of the low root-rnean-square deviation structure, but do not 
annealing structures (also the lowest energy structure). The 2 ranges include alternate conformational values reflecting concerted structural 
reflect deviations observed for other simulated annealing conformations changes (RNA BI to Bll; PNA p gauche+ to trans). 

PNA 

Base a B Y 8 E XI X2 X3 

Initial structures of the PNA-RNA com- 
plex were built with the -150 assigned 
NOE cross peaks by a distance geometry 
algorithm and were further refined with 
simulated annealing protocols (12). The 
overlaid calculated structures show reason- 
able convergence (Fig. 4). The salient fea- 
tures of these structures, in terms of torsion 
bond angles and helical properties, are list- 
ed in Table 1. The RNA strand adopts a 
conformation very close to standard "A" 
form helical geometry (13), with ribose 
pseudorotation angles near 0" and x angles 
near -160". Left-handed helices or struc- 
tures built with PNA inter-residue cis amide 
bonds did not satisfy the NMR restraints. 

The secondary amide of the PNA back- 
bone (Fig. 5A) is exclusively observed as the 
rotamer with the oxygen of the C7' carbonyl 
directed toward the COOH-terminus. The 
NMR data indicate that the amide protons 
of the PNA backbone do not participate in 
internal hydrogen bonds. No protection of 
the amide proton from chemical exchange 
with HzO was observed, chemical shifts are 
inconsistent with hydrogen bonds, and the 
simulated annealing-refined structures show 
long amide hydrogen to carbonyl oxygen 
distances (on average r 2.8 A) and poor N - 
H - 0 angles (~130") for hydrogen bond- 
ing. These results depart from published 
molecular modeling studies (1 4), where the 
7' carbonyl oxygen participates in a hydro- 
gen bond with the amide proton of the 
previous PNA residue. 

The PNA backbone is not as well re- 
strained by the experimental data as the rest 
of the structure. PNA backbone resonances 
are signihntly broadened, compared to 
those of the base protons or the RNA pro- 
tons, and stenmspecific assignments were 
not possible for any other than the H8',H8" 
gerninal pairs. A gwcche torsion angle in the 
ethylenediamine region of the backbone 
(NCCN = +60") is p r e f d  in the major- 
ity of the refined structures, but tram torsion 
angles occur for one or two of the residues in 
each structure. The line-broadening suggests 
that this angle is due to conformational 
flexibility, rather than an artifact due to a 
lack of experimental resnaints. The refined 

structures presented here indicate significant 
flexibility about the two dihedral angles im- 
mediately flanking the primary amide bond. 
Such flexibility could be an asset with re- 
spect to binding in that periodic fluctuating 
conformational adjustments could permit 
the PNA to remain in register with its 
complementary RNA strand. 

Three classes of low-energy confonna- 
tions (Fig. 5, B to D) were found during 
modeling studies of PNA-RNA complexes 
(1 5). One of these models (Fig. 5B) corre- 

Flg. 3. Two-dimensional 
NOESY ( T ~  = 200 ms), 
F1 '%-filtered (8) of 
PNA-RNA complex. Only 
magnetization originat- 
ing from protons at- 
tached to a labeled 13C 
is transferred to other 
nearby protons. Boxes 
across the diagonal con- 
nect the four geminal 
pairs of labeled residue 
T,. Boxes (3.5 and 5.0 
ppm) identify NOE cross 
peaks between the H8' 
and H3" proton estab- 
lishing orientation of the 
secondary amide. Note the 
PPm). 

Flg. 4. Ten refined struc- 
tur-es superimposed, with 
strand directionahties in- 
d i e d .  The average 
rcd-mean-square devia- 
tions for individual struc- 
tures from the overall av- 
erage structure are as f& 
lows: all atoms, 0.84 
PNA a m ,  0.97 A; and 
RNA atoms, 0.68 a The 
root-mean-square devia- 
tion between the Amott 
ideal structue for A form 
RNA (13) and the aver- 
age RNA structure in the 
PNA-RNA heteroduflex is 
1.13A 

sponded to that found experimentally (Fig. 
5A) and had the lowest calculated energy of 
the three. Asymmetric NOE intensities be- 
tween base H6,H8 protons and H8',H8" 
protons rule out one model (Fig. SC), while 
the remaining model (Fig. 5D) predicts; 
within the context of an overall antiparallel 
conformation, NOES from H8',H8" to 
H5',HSa rather than from H8',H8" to 
H3',H3" protons. These modeling studies 
provided some insight into the basis for the 
stability of the observed structure. The adop 

asymmetry of H8" and H8' NOE intensities to the H6 base proton (7.1 

SCIENCE VOL. 265 5 AUGUST 1994 



Flg. 5. (A) Stereo image of the average structure obtained from the incorporation of NMR restraints 
for the &C,-T, segment of the PNA strand. (B to D) Low-energy conformations of PNA suitable for 
antiparallel duplex formation (15). 

tion of an " A  form conformation puts the 
PNA C7' carbonyl group in a position isos- 
teric to an RNA C2', facilitating maximal 
solvent exposure of the two backbone car- 
bony1 oxygens. The C7' carbonyl oxygen is 
also placed proximal to H6 or H8 of the 
following base, allowing a favorable interac- 
tion between aromatic proton and carbonyl 
oxygen observed in several protein struc- 
tures. The preferred ethylenediamine 
~auche+ torsion ~ermits the PNA strand to 
"&t right-handk and maintain an inter- 
residue backbone distance similar to that of 
RNA. 

The NMR structures presented here pro- 
vide a basis for the design of improved 
PNA-based antisense agents. PNA analogs 
stabilizing the ethylenediamine torsion (f3) 
to gauche+ or preforming the appropriate 
secondary amide rotamer (x , )  could exhibit 
increased affinity, provided no unfavorable 
electrostatic, steric, or solvation interac- 
tions were introduced. 
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