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Orientation Selectivity of Cortical Neurons During 
lntracellular Blockade of Inhibition 

Sacha Nelson,Vouis Toth, Bhavin Sheth, Mriganka Sur 
Neurons in the primary visual cortex of the cat are selectively activated by stimuli with 
particular orientations. This selectivity can be disrupted by the application of antagonists 
of the inhibitory neurotransmitter y-aminobutyric acid (GABA) to a local region of the cortex. 
In order to determine whether inhibitory inputs are necessary for a single cortical neuron 
to show orientation selectivity, GABA receptors were blocked intracellularly during whole 
cell recording. Although the membrane potential, spontaneous activity, subfield antago- 
nism, and directional selectivity of neurons were altered after they were perfused internally 
with the blocking solution, 18 out of 18 neurons remained selective for stimulus orientation. 
These results indicate that excitatory inputs are sufficient to generate orientation selectivity. 

T h e  ability to respond selectively to con- tivity have led to conflicting interpreta- 
tours of a particular orientation is a com- tions. Intracellular recording studies (1-4) 
mon feature of visual cortical neurons and is have generally supported the hypothesis 
believed to underlie the first stages of the that orientation selectivity arises from the 
perception of form. Attempts to understand pattern of convergence of excitatory affer- 
the cellular mechanism of orientation selec- ents from the lateral geniculate nucleus 

(LGN) (5). Other studies, especially those . . 

Department of Brain and Cognitive Sciences, Massa- that local bicucul- 
chusetts Institute of Technoloav. Cambridae, MA line, a blocker of receptors for GABA,, -, . - 
02139, USA. have demonstrated the importance of inhi- 
*To whom correspondence should be addressed. bition in maintaining selectivity (6, 7). An 
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unresolved issue is whether inhibitory syn- 
apses directly prevent responses to nonop- 
timal stimuli or whether their effect is 
mediated indirectly by neighboring inter- 
connected cortical neurons. This distinc- 
tion is likely to be of general importance in 
understanding the function of inhibitory 
circuits throughout the cerebral cortex. 

In order to distinguish between direct 
and indirect effects of cortical inhibition, 
we developed a method of blocking inhib- 
itory conductances in single cortical neu- 
rons by perfusing them intracellularly with 
pipette solutions that contained cesium flu- 
oride (CsF), did not contain adenosine 
triphosphate (ATP) or guanosine triphos- 
phate (GTP) (8), and to which we added 
the chloride-channel blockers picrotoxin 
(PTX; 4 cells) ( 9 ) ,  or 4,4'-diisothiocyana- 
tostilbene-2,2'-disulfonic acid (DIDS; 14 
cells) (1 0). We assessed the efficacy of the 
inhibitory blockade in several ways. First, 
we tested in vitro the effects of our solutions 
on voltage-clamped responses to the 
GABAA agonist muscimol and to electrical 
stimulation of synaptic inputs (I I). Rat 
visual cortical neurons perfused internally 
with control solution had large inhibitory 
responses to applied muscimol (Fig. 1A) or 
to electrical stimulation (Fig. 1, C and D), 
whereas cells perfused with CsF-DIDS solu- 
tion had almost no response to the inhibi- 
tory agonist (Fig. 1B) and had purely excit- 
atory responses to electrical stimulation 
(Fig. 1, E and F) (1 2). 

Next, we confirmed that CsF-DIDS also 
blocked inhibition in vivo by attempting to 
evoke inhibitory responses in cat neurons, 
both electrically and visually (1 3). In con- 
trol cells, electrical stimuli delivered to the 
LGN resulted in small excitatory postsyn- 
aptic potentials (EPSPs) that were largely 
obscured by overlapping inhibitory postsyn- 
aptic potentials (IPSPs) (Fig. 2A) [see also 
(1, 3)]. In neurons perfused with CsF-DIDS 
(Fig. 2B), however, electrical stimuli 
evoked large EPSPs but no IPSPs. Control 
recordings from simple cells stimulated with 
stationary light bars showed inhibition 
when the stimulus was turned "on" in an 
"off' subfield or when it was turned "off' in 
an "on" subfield, as previously reported (3, 
14). During recordings from neurons per- 
fused with CsF-DIDS or CsF-PTX solu- 
tions, however, blockade of inhibition re- 
vealed a small underlying excitation at the 
onset of a light bar in the "off' subfield and 
at its offset in the "on" subfield (Fig. 2C). 
These results are similar to those observed 
after iontophoretic application of bicucul- 
line (6) and are consistent with the hypoth- 
esis that inhibition contributes to the an- 
tagonism between "on" and "off' subfields 
in cortical simple cells (1 5). 

We tested the effects of intracellular 
blockade of inhibition on the selectivity of 

neurons for the orientation of a fixed or degree of orientation selectivity. In six of 
moving bar in 18 cells, including 7 simple the cells tested during inhibitory blockade, 
cells, 6 complex cells, and 5 additional cells we presented stimuli at orientations that 
that had not been adequately tested with varied in increments of 30". Tuning curves 
stationary stimuli to be classified as simple constructed from these responses were sim- 
or complex. Both simple cells (Fig. 3A) and ilar to those obtained extracellularly from 
complex cells (Fig. 3B) maintained a high other cells (Fig. 4, A and B). In six addi- 

Fig. 1. Tests of inhibitory blockade 
in rat visual cortical neurons that 
were voltage-clamped in vitro. 
Traces are averages of three (A) or 
five (B), (C), and (E) responses. In 
(A) and (B), muscimol (100 pM) 
was applied by puffer pipette (ar- 
'row). (A) Responses during perfu- 
sion with control solution. (B) Larg- 
est responses that could be 
evoked in another cell after 10 min 
of perfusion with CsF-DIDS solu- 
tion. Duration of muscimol puff was 
60 ms in (B), as compared with 10 
ms in (A). (C and E) Synaptic cur- 
rents evoked by electrical stimula- 
tion (arrow) of afferents during 800- 
ms voltage steps from a holding 
potential of -52 mV. Step voltages 7 
ranged from -82 mV (C) or -97 
mV (E) to 23 mV by 15-mV incre- 

I200 PA 

50 rns 
ments. (C), Currents evoked in a F 

cell perfused with control solution 
were primarily outward at poten- - 
tials above -60 mV. In this cell and # -200 

in two others, the quaternary 
lidocaine derivative QX-314 (1 0 -600 

mM) was added to the control so- 
lution to improve the voltage -800 

clamp. Similar currents were 
evoked in cells perfused with con- G 
trol solution not containing QX-314. Musdrnol responses 

H 
Synaptic responses 

Peak current (measured at time 
indicated by filled circle) is plotted 
against membrane potential in (D). g 100 

(E) Currents evoked in another cell 
from the same slice as the cell in % Control CsF-DIDs Control CsF-DlDS 
(C) and perfused with CsF-DIDS n = 9  n = 7  n=13 n=10 

are inward at potentials below 0 mV. For clarity, the response at -97 mV is not shown. Peak current 
(filled circle) and current at 25 ms after peak (open circle) are plotted as filled and open circles in 
(F). (G and H) Peak muscimol and synaptic currents evoked at 0 mV. Numbers of cells tested are 
indicated below each bar. 

Fig. 2. Effects of inhibitory blockade on re- A B 
sponses of cat primary visual cortical neurons 
to electrical and visual stimulation in vivo. Each -58- J'----- 
trace is an average of five responses. (A and B) 
Responses to electrical stimulation (1 mA, 0.1 

A 5  mv -29k 
+ 50ms 

ms) of the. LGN. (A) Control cell response -75w -75 + 

consists of small initial EPSP followed by a large 
multiphasic IPSP (arrow). (B) Response con- 
sists of a large EPSP (arrow), without a subse- C 
quent IPSP, in a cell recorded with CsF-DIDS. 
Electrically evoked lPSPs were observed in all 
control cells (n = 3) and were absent in all cells , 
perfused with CsF-DIDS that were tested (n = 
6). Four of the cells perfused with CsF-DIDS 
responded at latencies of 1.6 to 2.0 ms, which 
indicates monosynaptic input. (C) Responses 2, 
to visual stimulation with optimally oriented, 
stationary bars of light presented at two differ- 
ent receptive field locations in a simple cell recorded with CsF-DIDS. Stimulus duration is indicated 
by the heavy line below trace 2. Membrane potential ( V , )  = -36 mV. 
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tional cells. we measured selectivitv both 
extracellularly (while patched on to the cell 
but before the achievement of whole-cell 
configuration) and intracellularly (after 
blockade of inhibition). The degree of ori- 
entation selectivity remained similar (Fig. 
4, C through E). 

The effects of intracellular perfusion on 
direction selectivity were more heteroge- 
neous. In three of the six cells studied 
before and after blockade there was an 
apparent loss of direction selectivity (Fig. 4, 
F through H). However, some of the re- 
maining 12 cells, which were studied only 
after blockade, remained quite directionally 
selective, and overall there was no substan- 
tial difference in the distribution of direc- 
tion selectivities in the blocked and control 
cells (Fig. 4, F and G). We observed, as 

Fig. 3. Responses of cells in area A 
17 of the cat visual cortex to mov- 
ing bars of light during inhibitory 
blockade of a simple cell (A) and 
a complex cell (B). Stimuli were 
moved through the receptive field 
at the optimal orientation and di- 
rection of motion (preferred) or at 

recently reported (1 5), that spiking re- 
sponses were often more directionally selec- 
tive than were subthreshold responses. 
Hence, loss of directional tuning in some of 
our cells could have resulted directly from 
inhibitory blockade (1 6) or, secondarily, 
from membrane depolarization. 

Although we observed changes in spon- 
taneous firing as well as in electrically and 
visually evoked synaptic responses that 
were indicative of the effective blockade of 
inhibition, we did not observe any substan- 
tial change in orientation selectivity. Our 
results are consistent with the hypothesis 
that the orientation selectivity of cortical 
neurons is due primarily to the pattern of 
convergent excitatory input they receive 
from thalamic afferents (1, 5) and from 
other cortical neurons (1 7). Our results are 

Preferred 

90" to the optimalorientation and 
direction of motion (orthogonal) V, 0.5 s 
= -39 mV (A), -66 mV (6). Re- 
sponses to three stimulus repeti- 
tions are overlaid in each panel. - 
Flg. 4. Effects of inhibito- A C Conkol F conto1 

ry blockade on orienta- 
tion and direction selec- 
tivity. Each stimulus was 
repeated five times, and 
responses were aver- 
aged, corrected for spon- 
taneous activity, and nor- 
malized to the preferred 
response. Spontaneous 
firing of control cells was 
0.29 2 0.17 impulses per 
second. During inhibitory 
blockade, constant hy- 
perpolarizing current was 
used to bring spontane- 
ous firing to 1.16 r 0.47 
impulses. (A and 8). Ori- 
entation tuning curves of 
six cells recorded extra- 

Inhibitory blockade 

Orientation (degrees) 

O 
10 30 M 70 90 

OrlentaUon lndex (%) 

lnhlbltory blockade 

9 2 !:ib 10 30 50 70 90 

Orlentallon lndex (X) 

Dlreetlon lndex (X) 

lnhlbltory blockade 

DlreeUon lndex (%) 

cellularly (A) and of six 
other cells recorded during intracellular blockade of inhibition (6). Responses are plotted against the 
stimulus orientation (expressed as degrees from preferred). (C through E) Orientation indices 
(normalized orthogonal response expressed as percent). (F through H) Direction indices (normalized 
null response expressed as percent). Control cells (C) and (F) include cells recorded intracellularly 
with control solution (open bars; n = 14) and cells recorded extracellularly before intracellular 
blockade of inhibition (hatched bars; n = 6). In (D) and (G), hatched bars represent same cells (n = 
6) shown in hatched bars of (C) and (F) but after intracellular blockade of inhibition. For these cells, 
the response at the orthogonal orientation was 0.2 2 1.6% of that elicited at the preferred direction 
before intracellular perfusion and was 3.0 2 5.4% afterward (mean r SD, P = 0.21, paired t test). 
Remaining cells recorded during inhibitory blockade (n = 10) are indicated by open bars. Two cells 
for which quantitative tests were done only while they were kept sufficiently hyperpolarized to prevent 
spiking are not included. (E) and (H) show individual orientation and direction indices for the six cells 
shown in the hatched bars of (C), (D), (F), and (G), recorded extracellularly (pre) and after intracellular 
blockade of inhibition (post). 

not consistent with the hypothesis that 
inhibitory synapses selectively counteract 
the effect of excitation at non-optimal ori- 
entations. The apparent discrepancy be- 
-tween our data and those obtained when 
GABA receptors are blocked by application 
of antagonists to a local region of the visual 
cortex (6, 7) may reflect the importance of 
inhibition in regulating recurrent cortical 
excitarion (1 7). We hypothesize that inhi- 
bition evoked at near optimal orientations 
may help to raise the cell's threshold for 
firing, thus sharpening the spike response to 
more broadly tuned excitatory input (18). 
In our experiments, the firing threshold was 
presumably maintained near a normal level, 
despite inhibitory blockade, by the intracel- 
lular injection of hyperpolarizing current. 
Because cortical neur.ons receive the major- 
ity of their excitatory input from neighbor- 
ing cortical neurons (19), the effect of a 
reduction in the firing threshold in an 
ensemble of neurons should be more dra- 
matic than the same effect when confined 
to a single neuron (20). 
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NMR Solution Structure of a Peptide 
Nucleic Acid Complexed with RNA 

Stephen C. Brown,* Stephen A. Thomson, James M. Veal, 
Donald G. Davis 

Peptide nucleic acids (PNA) incorporating nucleic acid bases into an achiral polyamide 
backbone bind to DNA in a sequence-dependent manner. The.structure of a PNA- 
ribonucleic acid (RNA) complex was determined with nuclear magnetic resonance meth- 
ods:A hexameric PNA formed a 1 : I  complex with a complementary RNA that is an 
antiparallel, right-handed double helix with Watson-Crick base pairing similar to the " A  
form structure of RNA duplexes. The achiral PNA backbone assumed a distinct confor- 
mation upon binding that differed from previously proposed models and provides a basis 
for further structure-based design of antisense agents. 

A novel therapeutic strategy is to titrate 
the concentration of a target enzyme or 
receptor by altering its expression either at 
the transcriptional level (antigene) or 
translational level (antisense) by means of 
an agent directed against the nucleic acid 
sequence encoding the target (1). Al- 
though this approach has been shown to 
work in mammalian and plant cells (2) 
with the use of natural and modified nu- 
cleic- acids (3), significant obstacles to 
using such gene-targeted agents to treat 
human disease remain unsolved (4). PNAs 
incorporating the nucleic acid bases ade- 
nine, cytosine, thymine, and guanine into 
a polyamide backbone have been de- 
scribed (5) and are of interest as gene- 
targeting agents. They are made with stan- 
dard peptide.chemistries fully compatible 
with automated solid-phase synthesis, 
bind more tightly to their DNA targets 
than does the cognate DNA strand, and 
are sensitive to mismatch (6). ~, 

We conducted a nuclear magnetic res- 
onance (NMR) investigation to describe 
the structure of a PNA-RNA complex 
containing all four common bases. The 
sequence GAACTC chosen for the PNA 
(Fig. 1) is capped with G-C base pairs to 
improve the stability of the complex. The 
PNA was synthesized with >98% enrich- 
ment of 13C and 15N nuclei on the back- 
bone (7) of the thymine PNA monomer. 
In this way, isotope-filtering and isotope- 

detecting heteronuclear NMR experi- 
ments (8) could facilitate 'H resonance 
assignments and provide more information 
regarding the structure and dynamics of 
the PNA backbone. 

Titrations of PNA GAACTC-K#(bis- 
succinyl) and r(GAGUUC) followed by 
NMR indicated only a 1: 1 complex 
formed at all ratios, with six imino reso- 
nances appearing from reduced solvent 
exchange rates (Fig. 2A). NMR spectra of 
the uncomplexed PNA indicated that 
many conformers were present in slow 
chemical exchange (Fig. 2C) because of 
cis-trans equilibria about the secondary 
amide bond, x,, of each PNA residue, 
whereas in the PNA-RNA complex only 
one resonance was detected for each pro- 
ton (Fig. 2B). These data suggest that the 
PNA backbone adopts a single X, confor- 
mation when bound to the complementary 
RNA strand. 

A complete set of two-dimen~ional 
(2D) homonuclear NMR data (9) provid- 
ed proton resonance assignments of the 
PNA-RNA complex by standard method- 
ologies (1 0). The single thymine residue 
(T,) was easily identified by both double- 
quantum (2Q) and total correlation spec- 
troscopy (TOCSY) spectra (9). Observa- 
tion of strong nuclear Overhauser effect 
(NOE) cross peaks to two adjacent pyrim- 
idine H5,H6 proton pairs identified these 
as the flanking cytosine bases C4 and C6. 
NOE cross peaks between cytosine H5 and 
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27709, USA. guanine imino proton, whereas NOES 
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