
h ~ ~ ~ ~ ~ , 

type compounds (38),or (iii) that the signal 
is from other plants that rarely synthesize 
oleanane precursors. 

Finally, this data set introduces the 
quantitative use of the oleanane parameter 
in assessing angiosperm input to petroleum 
sources. Petroleum with measurable ole-
anane has almost certainly been generated 
from Cretaceous or younger source rocks, 
whereas that with an oleanane ratio >0.2 
was probably derived from Tertiary sources. 
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The Temporal Distribution of Seismic Radiation 
During Deep Earthquake Rupture 

Heidi Houston and John E. Vidale 
The time history of energy release during earthquakes illuminatesthe process of failure, 
which remains enigmatic for events deeper than about 100 kilometers. Stacks of tele-
seismic recordsfrom regionalarraysfor 122 intermediate (depths of 100to350 kilometers) 
and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern 
of short-period seismic radiation has a systematic variation with depth. On average, for 
intermediate depth events more radiation is released toward the beginning of the rupture 
than near the end, whereas for deep events radiation is released symmetrically over the 
duration of the event,with an abrupt beginning and end of rupture. These findingssuggest 
a variation in the style of rupture related to decreasing fault heterogeneity with depth. 

T h e  fundamental processes of earthquake of problems of scale, temperature, and pres-
initiation and termination are not well under- sure. Although the failure mechanism that 
stood. The details of faulting are obscured by generates deep seismicity remains unknown 
noise in seismograms, including the incoher- ( I ) ,  it is likely that it and the rupture process 
ence of the high-frequency wave field. In change with depth in the Earth because am-
addition, it is difficult to simulate earthquake bient pressure and temperature increase with 
faulting adequately in the laboratory because depth; H,O and CO, fluids are predicted to 

disappear below -300 km (Z), and phase 
H. Houston, Institute of Tectonics, Earth Sciences changes may play a role in rupture at great
Department, University of California, Santa Cruz, CA depth (3-7). ~ ~ ~ ~the source char-
95064, USA. 
J. E. Vidale, United States Geological Survey, 345 acteristics earthquakes with greater 
MiddlefieldRoad, Menlo Park, CA 94025, USA. than about 100 km are more easily studied 
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Fig. 1. Example of the stacked waveform and 
envelope for a typical earthquake. The top 
three traces are individual seismograms from 
the Northern California Seismic Array. Below 
them is shown the sum (or stack) of 134 records 
of this event. Summing together many records 
suppresses incoherent background noise gen-
erated near the receivers and reveals the ter-
mination of rupture. The envelope of the stack 
(bottom) is superimposed on the stack and the 
reverse of the stack to emphasize that an 
envelope is a smooth function that passes 
through the peaks of a time series. 

than those of shallowerevents because seismic 
waves reflected from the Earth's surface amve 
long enough after the direct body wave that 
this wave is not contaminated and, thus, can 
be more readily analyzed (8). Therefore, to 
explore changes in the failure mechanism 
with depth, we studied the rupture process of 
events deeper than 100 km.Specifically, we 
determined, in several depth ranges, the av-
erage temporal profile of short-period seismic 
radiation. 

Although the initiation of faulting is 
generally easily identified on seismograms, 
later slip is often difficult to resolve. Sum-
ming together many short-period (0.5 to 5 
s), teleseismic records from regional arrays 
enables the identification of rupture details 
and termination by canceling noise caused 
by incoherent reverberations near the sta-
tions (9) (Fig. 1). We summed together (or 
stacked) 30 to 200 vertical-component rec-
ords of the P wave for each earthquake from 
one of three regional networks on the West 
Coast of the United States (10). The stack-
ing process yields a similar stacked wave-
form (or stack) at each of the three arrays 
(Fig. 2) (10) The stack contains informa-
tion from the source convolved with the 
instrument response. 

We selected 122 events for analysis from 
169eligible earthquakesmainly on the basis 
of favorable radiation pattern and availabil-
ity of data from at least one of the three 
arrays (11). The survey of earthquake dura-

SN : 112 stations 

NCSN: 149 stations 

0 10 20 30 40 
Time (s) 

Flg. 2. Comparison of stacked waveforms from 
different arrays for one earthquake (23 June 
1991). This event is unusually complex, but 
serves well to illustrate the consistency of the 
stacks at the different arrays; most events ex-
amined did not hesitate as this one did. SCSN 
indicates the Southern California Regional Net-
work, NCSN the Northern California Seismic 
Network, and WRSN the Washington Regional 
Seismic Network. The event occurred at a 
depth of 570 km beneath Argentina with a 
moment of 8.6 x loz6dyne-cm. 

tions by Vidale and Houston (9) revealed 
that, for a given earthquake size, durations 
are significantly shorter at greater depths, 
with a greater range of durations for events 
shallower than 350 km. 

To deteimine the temporal pattern of 
the seismic radiation, we computed the 
envelope of each stack (Fig. 1). The enve-
lope is alwayspositive and essentially passes 
through the peaks of the stacks (12). It 
represents the temporal distribution of 
band-limited seismic radiation from the 
earthauake source (13). We then stretched. , 

each envelope in time to equalize the dura-
tion (14), using the durations picked from 
the stacks (9). Finally, we averaged the 
envelopes in three depth ranges. 

For the deepest group of events, the 
average envelope (Fig. 3A) is quite sym-
metric in time, ending almost as abruptly 
as it begins (15). For events with depths 
between 350 and 520 km, the average 
envelope is somewhat more asymmetric in 
time, ending more gradually than it be-
gins. For the shallowest group of events 
(those with depths between 100 and 350 
km), the average envelope is even more 
asvmmetric. Bearing in mind that the 

u 

scaled durations decrease by about a factor 
of 2 as d e ~ t hincreases from 100 to 600 km 
(9), we infer that longer duration events 
have more asymmetric envelopes. 

In consideration of the large variation in 
the scaled durations of events with depths 
between 100 and 350 km, we further 
grouped the events in this depth range into 
the fastest, middle, and slowest thirds, ac-
cording to their durations, and averaged the 

0 0.5 1 
Nomallzed time 

Fig. 3. Average envelopes of stacked wave-
forms. Before averaging, the envelope of each 
earthquake was stretched in time to equalize 
the duration, using durations measured from 
the stacks (9).Thus, for each stretched enve-
lope, rupture begins at normalized time 0 and 
ends at normalized time 1 (14). (A) Average 
envelopes of stacks of events grouped by 
depth ranges 100 to 350, 350 to 520, and 520 
to 700 km. The average envelope in the 100 to 
350 km depth range is asymmetric, ending 
more slowly than it begins; at greater depths 
the average envelope is more symmetric. (B) 
Average envelopes of stacks of events in the 
100 to 350 km depth range grouped by dura-
tion. The upper (middle, lower) envelope is the 
average of the 23 events with the longest 
(middle,shortest) scaled durations. The longer 
duration events have, on average, more asym-
metric envelopes than do the shorter duration 
events. 

values of the envelopes in these groups (Fig. 
3B). Again, the events with long scaled 
durations have asymmetric envelopes, 
whereas the events with short scaled dura-
tions have much more symmetric enve-
lopes. Evidently, even within the same 
depth interval, events with long scaled 
durations have a more gradual decrease in 
their short-period radiation. 

Thus, in general, the temporal symme-
try of the envelope is inversely related to 
the duration of the slip, which decreases 
significantly with depth (16). Evidently, 
intermediate depth events have longer 
scaled durations than deep events because 
the rupture of intermediate events tends to 
end more gradually. One of the possible 
explanations for the observed decrease in 
duration with depth given in (9) was that 
long duration events may simply have a 
slower rupture velocity as a proportion of 
shear-wave velocity, while being similar to 
shorter events in all other aspects of the 
rupture process such as stress drop or fault 
aspect ratio. Our result that the shape of 
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Fig. 4. Average envelopes of stacks of events 
in different depth ranges when time is scaled to 
the seismic moment of each earthquake rather 
than to the measured duration as in Fig. -3. 
Before averaging of the stacks, the time is 
scaled by the cube root of the seismic moment 
of the event (in units of loz6 dyne-cm). As in 
Fig. 38, the envelopes labeled slowest, middle, 
and fastest represent the averages of the 23 
events with the longest, middle, and shortest 
scaled durations. The slowest events in the 100 
to 350 km depth range tend to start more slowly 
(see arrows) and end much more slowly than 
other events (note base line). 

the envelope changes with depth rules this 
explanation out and favors the notion, 
developed below, that greater heterogene- 
ity at intermediate depth leads to asymmet- 
ric envelopes. 

Another scheme for scaling the enve-
lopes before averaging them is to stretch the 
envelopes in time according to the cube root 
of their seismic moments (1 7) rather than 
the measured duration. Invariance under 
such a scaling is predicted by most earth- 
quake source models (18). Scaling average 
envelopes according to the event moments 
emphasizes the change in duration with 
depth and shows that intermediate depth 
events tend to start somewhat slower and 
end much slower than deeper events (Fig. 
4). Differences in the rise time of the enve- 
lopes can be interpreted more readily than 
with the previous procedure for scaling the 
envelopes before averaging (Fig. 3). On the 
other hand, the symmetry and termination 
of the rupture is difficult to evaluate in this 
scheme because of the averaging of events 
with a variety of durations, which was com- 
pensated for in the construction of Fig. 3. 
The envelope shapes in Fig. 4 are consistent 
with the observed decrease in rise times 
below about 450 km (19). 

Seismic attenuation is concentrated in 
the upper 300 km of the mantle, so tele- 
seismic waves from intermediate depth 
earthquakes undergo more attenuation than 
waves from deep earthquakes. We estimat- 
ed the effect of the additional attenuation 
suffered by intermediate depth events by 
convolving an attenuation operator associ- 
ated with a differential t* of 0.4 s with the 

Stack 
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604 km depth r\ 
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t '= 0.4 sA t 


0 5 
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Fig. 5. Effect of attenuation on waveform. The 
stack (upper trace) of a large deep earthquake is 
convolved with an attenuation operator represent- 
ed by a t * of 0.4 s to simulate the extra attenuation 
suffered by a 200-km-deep event compared to a 
600-km-deep event. The result (lower trace) is 
similar to the original stack, which illustrates the 
minimal effect of the attenuation. 

stack of a deep earthquake (Fig. 5). The 
effect is small, and thus, the observed dif- 
ferences in envelope shape for deep and 
intermediate events (Figs. 3 and 4) cannot 
be attributed to attenuation. 

The changes in rupture style with depth 
found here may be associated with increas- 
ing homogeneity in material properties as 
lithosphere descends through the upper 
mantle (Fig. 6). Deeper subducted litho- 
sphere is subject to greater temperature, 
pressure, and time at depth, which tend to 
promote greater homogeneity in material 
properties. Both the slab thermal structure 
(20) and mineralogy (21), for example, are 
likely more homogeneous at depths of 500 
to 600 km than of 200 to 300 km. Tempo- 
rally asymmetric faulting of longer duration 
could be related to greater heterogeneity at 
intermediate depth, which could enhance 
heterogeneity in the distribution of slip 
during a single earthquake (22). The dura- 
tion and asymmetry would be controlled by 
the tendency-of the largest moment-releas- 
ing subevent to produce the most immedi- 
ate aftershocks or to distribute stress onto 
the lower slip regions surrounding it, break- 
ing them and prolonging rupture with a 
small amount of slip. 

Anotherreason that faults deeper than 
400 km could be more homogeneous is 
related to the hypothesis that deep earth- 
quakes are caused by a shear instability 
associated with the transformation of meta- 
stable olivine to its high-pressure phases 
within the cold core of subducting slabs 
(3-5). This hypothesis implies that faulting 
below 400 km in depth occurs only on new 
faults, which would likely be more homo- 
geneous structures than reactivated faults 
(23). In contrast, intermediate-depth earth- 
quakes are thought to occur through fluid- 
assisted cracking (the Terzagi effect) (3-5, 

Intermediate 
(100-350km depth) 
n 

Heterogenous fault plane Intermediate envelope shape 

(350-700kin depth)

/7 n 
u 

Homogeneous fault plane Deep envelope shape 

Fig. 6. Schematic illustration of the possible 
role of fault heterogeneity in envelope shape 
and rupture duration. Greater heterogeneity at 
intermediate depths may result in a relatively 
long duration and asymmetric envelope, 
whereas greater homogeneity deeper may re- 
sult in a shorter duration and more symmetric 
envelope. The cartoon is intended to illustrate 
differences in the amplitude, as well as the 
scale length, of variations in physical properties 
in the subducting slab. 

7), in which case fault reactivation may 
play a role. Although partial transformation 
associated with the transformational fault- 
ing of metastable olivine could lead to 
greater heterogeneity in the deep slab (24), 
only. untransformed regions, presumably 
more homogeneous, are expected to under- 
go the shearing instability. (That is, the 
heterogeneity relevant to this process is 
that on a given fault plane before the 
shearing instability occurs, rather than in 
the surrounding regions.) 

This and other recent studies have found 
changes in several aspects of fault rupture 
processes with depth, including the shape of 
the envelope of seismic radiation presented 
here, earthquake durations (9), rise times 
(1 9), and aftershock production (24). Vari- 
ations in rupture processes with depth have 
been difficult to discern previously, although 
they may be expected on the basis of known 
changes in material properties from the 
Earth's surface through the transition zone. 
These variations should help constrain the 
physical mechanism by which deep earth- 
quakes occur, which remains unknown. 

Furthermore. if the association between 
envelope shape and rupture duration for 
earthquakes deeper than 100 km holds for 
events at shallower depths as well, then 
shallow faulting may be strongly controlled 
by fault heterogeneity. An understanding of 
this association would have important im- 
plications for seismic hazard. 
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Orientation Selectivity of Cortical Neurons During 
lntracellular Blockade of Inhibition 

Sacha Nelson,Vouis Toth, Bhavin Sheth, Mriganka Sur 
Neurons in the primary visual cortex of the cat are selectively activated by stimuli with 
particular orientations. This selectivity can be disrupted by the application of antagonists 
of the inhibitory neurotransmittery-aminobutyricacid (GABA)to a localregionof the cortex. 
In order to determine whether inhibitory inputs are necessary for a single cortical neuron 
to show orientation selectivity, GABA receptors were blocked intracellularly during whole 
cell recording. Although the membrane potential, spontaneous activity, subfield antago-
nism, and directional selectivity of neuronswere altered after they were perfused internally 
with the blockingsolution, 18out of 18neurons remainedselectivefor stimulus orientation. 
These results indicatethat excitatory inputsare sufficientto generateorientation selectivity. 

T h e  ability to respond selectively to con- tivity have led to conflicting interpreta-
tours of a particular orientation is a com- tions. Intracellular recording studies (1-4) 
mon feature of visual cortical neurons and is have generally supported the hypothesis 
believed to underlie the first stages of the that orientation selectivity arises from the 
perception of form. Attempts to understand pattern of convergence of excitatory affer-
the cellular mechanism of orientation selec- ents from the lateral geniculate nucleus 

(LGN) (5). Other studies, especially those . . 
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02139, USA. have demonstrated the importance of inhi-
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